Abstract

e Existing protein generation and representation models
modality implicit
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sequence OR structure, with the other

e The latent space of protein sequence-to-structure predictors (e.g. ESMFold [1]) offer a joint
representation of structure and sequence, and can be tamed to obtain explicit decoding to

sequence and structure.

o However, the latent space, similar to large language models, is pathological and contains

massive activations [2]

e Weintroduce CHEAP (Compressed Hourglass Embedding Adaptations of Proteins)
representations, and find that the channel dimension of ESMFold latent spaces can be
compressed by up to 256x, while retaining rich structural and functional information

e Our work paves the way towards enabling two-stage latent diffusion generation that has been
successful in images [3] for the simultaneous multimodal generation of sequence and structure.
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Figure 1. Visualizing how to obtain a joint embedding of sequence and structure from ESMFold.

Massive Activation in Protein Language Models

e ESMFold is derived from a language model, and latent space contains massive activations:
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Figure 2. (L) Histogram of per-channel means, where some
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channels have drastically larger means.

Removing three outlier channels with mean absolute values =20 creates a smoother latent space. (M,
R) Removing outlier channels cause structure prediction to disintegrate as observed qualitatively and

on structure prediction accuracy metrics.
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Figure 4. Visualization and TMScore for embeddings at different channel compression levels. A shortening
factor of 2 was applied to all structures (original dimension: 512 x 1024). Despite aggressive compression

at the bottleneck, performance can still be retained to a high degree.
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Figure 6. Comparing FSQ [5] and VQ-VAE performance
across a range of codebook sizes; results are consistent
with image experiments in [5].
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Figure 5. Continuous embeddings can be
compressed aggressively (x-axis) while retaining
performance (y-axis). RMSPD is
superimposition-free variant of RMSD.

Methods: Defining a Multimodal Latent Space

Define sequence s:= {r;}~, 3D positions of atoms in a residue r:= {a;}}*
a € R* and its all-atom structure Q:={r;}}-, . During inference for ESMFoId,
the pairwise input is initialized to zero. Then:

X = ¢s(s) ESM2 Language Model
Q= ¢,'(x,2) ESMFold Structure Module

We can therefore sample from a learned distribution X ~ py(x) = ps(s, Q2)
and use the above mappings to decode to both structure Q = ¢,'(%) and
sequence s = ¢ '(x) (Fig. 1).

Methods: Continuous Compression

Inspiration: to obtain a VQGAN [4] like autoencoder for latent
diffusion models [3] that compresses salient information and improve
diffusion efficiency and quality

Use an Hourglass Transformer architecture to create a bottleneck that
is shortened length-wise and down-projected channel-wise

To fix massive activations, normalize by channel statistics:

X — Xmi
X, _— = X ((Cmax - Cmin) I cmin)

Xmax — Xmin

Methods: Discrete Compression

Inspiration: autoregressively modeling tokenized image
representations is a successful paradigm in image generation

o aim to compress salient information into discrete tokens

o examine different codebook sizes and discretization method
VQVAE: nearest neighbor search for a codebook vector:

Lvq = logp(x|hy(z)) + |Isglhe(x)] — 2|[3 + Bl|he(x) — sglz]]];

FSQ: directly bin into a discrete number
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Figure 3. Obtaining a compressed embedding that might continuous
(with tanh bounding) or discrete
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Figure 7. On PEER [6] benchmark tasks, function performance degrades
more drastically as dimensions are reduced, as compared to structure and
sequence tasks. Some tasks are more affected by compression than others.
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