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● Existing protein generation and representation models sequence OR structure, with the other 
modality implicit

● The latent space of protein sequence-to-structure predictors (e.g. ESMFold [1]) offer a joint 
representation of structure and sequence, and can be tamed to obtain explicit decoding to 
sequence and structure.
○ However, the latent space, similar to large language models, is pathological and contains 

massive activations [2]
● We introduce CHEAP (Compressed Hourglass Embedding Adaptations of Proteins) 

representations, and find that the channel dimension of ESMFold latent spaces can be 
compressed by up to 256x, while retaining rich structural and functional information

● Our work paves the way towards enabling two-stage latent diffusion generation that has been 
successful in images [3] for the simultaneous multimodal generation of sequence and structure.

Figure 1. Visualizing how to obtain a joint embedding of sequence and structure from ESMFold.

Abstract

● ESMFold is derived from a language model, and latent space contains massive activations:

Figure 2. (L) Histogram of per-channel means, where some channels have drastically larger means. 
Removing three outlier channels with mean absolute values >20 creates a smoother latent space. (M, 
R) Removing outlier channels cause structure prediction to disintegrate as observed qualitatively and 
on structure prediction accuracy metrics.

Massive Activation in Protein Language Models

● Inspiration: autoregressively modeling tokenized image 
representations is a successful paradigm in image generation
○ aim to compress salient information into discrete tokens
○ examine different codebook sizes and discretization method

● VQVAE: nearest neighbor search for a codebook vector:

● FSQ: directly bin into a discrete number

Define sequence                  , 3D positions of atoms in a residue
           and its all-atom structure                   . During inference for ESMFold, 
the pairwise input is initialized to zero. Then:

We can therefore sample from a learned distribution
and use the above mappings to decode to both structure                  and 
sequence                  (Fig. 1).

Methods: Defining a Multimodal Latent Space

● Inspiration: to obtain a VQGAN [4] like autoencoder for latent 
diffusion models [3] that compresses salient information and improve 
diffusion efficiency and quality

● Use an Hourglass Transformer architecture to create a bottleneck that 
is shortened length-wise and down-projected channel-wise

● To fix massive activations, normalize by channel statistics:

Methods: Continuous Compression

Methods: Discrete Compression

Results

Figure 6.  Comparing FSQ [5] and VQ-VAE performance 
across a range of codebook sizes; results are consistent 
with image experiments in [5].

Figure 5.  Continuous embeddings can be 
compressed aggressively (x-axis) while retaining 
performance (y-axis). RMSPD is 
superimposition-free variant of RMSD.

Figure 7. On PEER [6] benchmark tasks, function performance degrades 
more drastically as dimensions are reduced, as compared to structure and 
sequence tasks. Some tasks are more affected by compression than others.

Figure 3. Obtaining a compressed embedding that might continuous 
(with tanh bounding) or discrete

Figure 4. Visualization and TMScore for embeddings at different channel compression levels. A shortening 
factor of 2 was applied to all structures (original dimension: 512 x 1024). Despite aggressive compression 
at the bottleneck, performance can still be retained to a high degree.
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