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Summary

We present CPCProt, a protein sequence embedding model
which achieves comparable results on TAPE downstream bench-
mark tasks with 2% to 10% less parameters. Our model is
available at https://github.com/amyxlu/CPCProt.

Motivation

• Though recent works demonstrate promise, current methods
take directly from large NLP language models.
• Since sequences are fundamentally vehicles for information

transmission, capturing phenotypic information from protein
sequences can be viewed as information transmission across
the “noisy channels” of heredity and translation.

InfoNCE Loss

We adopt the contrastive InfoNCE objective [1] for proteins,
which estimates the mutual information I ′NCE(zt+k; ct):

Lt+k = −E
[

log
exp(f (zt+k, ct))

exp(f (zt+k, ct)) +
∑N−1

j=1 exp(f (z ′j , ct))

]
, (1)
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CPCProt: Methods

• “Patching” Protein Sequences: Each input x is divided into
fixed-length patches. Each patch passes through genc to form z ,
which are concatenated and passed into gar to form c .
• Aggregating Mutual Information Estimates: At a given

position t, we estimate the mutual information (MI) I ′NCE(zt+k; ct)
using Equation 1 for k ∈ {1, 2, . . . ,K}. The final loss minimized for
each batch is:

L = 1
Lz−K−tmin

1

K

Lz−K∑
t=tmin

K∑
k=1

Lt+k (2)

• Negative Sampling: In each batch of N samples, we have a
single “correct” pair of {zt+k, ct} where the ct = gar(zt), and N − 1
“fake” pairs where z ′ is drawn from other mismatched samples
in-batch to create {z ′j , ct}N−1

j=1 .

Benchmark Downstream Tasks and Datasets

For consistency with downstream benchmarks [2], we use Pfam for
pretraining, and the same datasets and tasks for downstream evaluation:

• Remote Homology
• Classify structural folds (1195

classes). Top-1 accuracy.

• Secondary Structure
• Sequence-to-sequence task

mapping positions to {helix,
strand, other}. Q3
(Three-class) accuracy.

• Fluorescence
• Deep mutational scan dataset mapping

mutant GFP sequences to log-intensity.
Spearman’s ρ.

• Stability
• Log-difference of the actual and

predicted EC50 of a mutant protein.
Spearman’s ρ.

We use three methods for selecting pretraining hyperparameters, to avoid
overfitting to benchmarks:
• Validation set performance on downstream tasks
• Accuracy on pretraining contrastive task
• Simple 1-nearest-neighbor classifier for a toy classification task

Downstream Tasks Results

Using the default MLP/CNN classification heads in TAPE [2]:

# of
Embedding
Parameters

Remote
Homology

Secondary
Structure

Stability Fluorescence

Fold Superfamily Family CB513 CASP12 TS115
BERT 92M 0.21 0.34 0.88 0.73 0.71 0.77 0.73 0.68
ResNet 48M 0.17 0.31 0.77 0.75 0.72 0.78 0.73 0.21
LSTM 44M 0.26 0.43 0.92 0.75 0.70 0.78 0.69 0.67

Bepler et al. 19M 0.17 0.20 0.79 0.73 0.70 0.76 0.64 0.33
Unirep 18M 0.23 0.38 0.87 0.73 0.72 0.77 0.73 0.67

One Hot 0 0.09 0.08 0.39 0.69 0.68 0.72 0.19 0.14
CPCProt 1.7M 0.12 0.12 0.48 0.69 0.70 0.73 0.65 0.68

CPCProtGRU large 8.4M 0.13 0.14 0.52 0.70 0.70 0.73 0.65 0.68
CPCProtLSTM 71M 0.11 0.11 0.47 0.68 0.66 0.70 0.68 0.68

Using simple logistic regression (LR) and kNN downstream classifiers:

Remote Homology
Fold Superfamily Family

LR kNN LR kNN LR kNN
UniRep 0.08 0.06 0.18 0.11 0.48 0.38
BERT 0.20 0.11 0.30 0.24 0.76 0.74

CPCProt 0.14 0.12 0.13 0.10 0.50 0.51
CPCProtGRU large 0.13 0.12 0.14 0.10 0.50 0.55

CPCProtLSTM 0.14 0.11 0.15 0.12 0.52 0.55

Secondary Structure
CB513 CASP12 TS115

LR LR LR
UniRep 0.66 0.80 0.70
BERT 0.72 0.82 0.77

CPCProt 0.61 0.80 0.68
CPCProtGRU large 0.62 0.80 0.69

CPCProtLSTM 0.62 0.80 0.69

Stability
LR kNN

MSE ρ MSE ρ
UniRep 0.21 0.62 0.24 0.57
BERT 0.36 0.39 0.23 0.49

CPCProt 0.34 0.55 0.18 0.51
CPCProtGRU large 0.31 0.62 0.18 0.52

CPCProtLSTM 0.22 0.62 0.19 0.54

Fluorescence
LR kNN

MSE ρ MSE ρ
UniRep 1.32 0.55 1.66 0.37
BERT 1.15 0.52 1.75 0.46

CPCProt 1.13 0.54 1.82 0.49
CPCProtGRU large 0.81 0.63 1.84 0.50

CPCProtLSTM 0.85 0.67 1.80 0.51

Discussion

• In settings with limited compute resources, a parameter-efficient model such as CPCProt may be
more desirable than marginal increases in accuracy.
• Using different downstream classifiers and metrics can change the ordering of embedding

performances.
• Reflection on best practices for quantitative assessment for protein embeddings is needed as a

community. Directly taking practices from NLP or CV (i.e. benchmarks on downstream tasks) fail
to capture the greater diversity of use cases for biological sequence embeddings.

https://github.com/amyxlu/CPCProt
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