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Introduction

• Current methods for learning self-supervised sequence embeddings in
biology rely on large language models for NLP, leaving open the
question of how best to design self-supervised methods which align
with biological principles.
• In this perspectives piece, we illustrate how maximizing information

across phylogenetic “noisy channels” is more biologically-motivated
than current language models for protein representations, and
theoretically desirable.

Background Works: Contrastive Learning for Mutual
Information Maximization

• InfoMax optimization principle: Find a mapping g such that the
Shannon mutual information between the input and output is
maximized [6]:

max
g∈G

I (X ; g(X )) (1)

• InfoMax for Representation Learning: Recently, works capture
this intuition to train deep encoders for g , and yield empirically
desirable representations for images, text, and audio, often following
this general form [9]:

max
g1∈G1,g2∈G2

I ′(g1(v1); g2(v2)) (2)

• Given input x , and transformations t1 and t2, define v1 = t1(x) and v2 = t2(x) as
two different “views” of x , and encoder(s) and latent representations z1 = g1(v1)
and z2 = g2(v1), respectively.

• The goal is to find encoder mappings which maximize the mutual information
between the outputs.

• Maximizing Equation 2 is equivalent to maximizing a lower bound on true InfoMax
objective [7].

• InfoNCE Loss for Mutual Information Estimation: The
InfoNCE estimator [7] estimates I (v1, v2) by minimizing the loss:

LNCE := Ev1,v2

[
log

exp(f (v+
1 , v2))

exp(f (v+
1 , v2)) +

∑N−1
j=1 exp(f (v−1 j, v2))

]
, (3)

• v+
1 , v2 ∼ p(v1, v2) denote a “similar” pair drawn from the empirical joint

distribution of the two views, and v−1 , v2 ∼ p(v1)p(v2) is a ”dissimilar” pair of
views.

• Equation 3 is a cross-entropy which identifies the similar pair from the dissimilar
pair of views; losses which fall into this general form are termed ”contrastive
learning” [1].

• Augmentations are often-used strategy to generate views [2].
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Evolution as Sequence Augmentation

Here, we take SimCLR [2] as an illustrative example of a contrastive
learning framework which can be directly adapted to use evolutionary as an
augmentation strategy to create views.

• Original SimCLR [2]: x is an input image, and two image
augmentation methods, t and t ′, are sampled from a set of image
augmentation methods T , to produce image augmentation v1 and v2,
which are then passed into a trainable encoder g(·).
• SimCLR augmentations, re-cast as a phylogenetic tree: x can

be viewed as a (hypothetical) common ancestor, while T is a set of
sequence families, and t, t ′ are two families sampled from this database.
One can use real or simulated sequences to create T .

Why Evolution as Biological Sequence Augmentation
for Contrastive Learning?

• Invariant Representations Across Evolutionary
“Noisy-Channels” Mirrors Comparative Genomics
• By using phylogenetic relationships to create views, the contrastive objective

encourages agreement between important features across homologous sequences.
• This directly captures the central philosophy of sequence conservation in

comparative genomics.
• Molecular evolution and the genotype-to-phenotype
relationship has a clear analogy to information transmission
• The analogy between molecular evolution and noisy-channel coding is well-rooted in

prior work [3]: DNA dictates information transmission across generations, which
must be transferred through a noisy “mutation and drift channel”.

• Since the genotype-to-phenotype manifestation is information transfer, and genomic
information is transferred by heredity, we may view functional phenotypes as
“decoded” information that was transmitted from a common ancestor via molecular
evolution [5].

• This is thus a good proxy for maximizing structure and function, the central
desiderata for pretrained biological sequence embeddings.

• Evolutionary Augmentation Theoretically Accords with the
InfoMin Principle [8] for Choosing Good Views
• “InfoMin” principle for selecting optimal views: Good views should have

minimize their shared MI I (v1, v2) while maximizing task-relevant information for
downstream uses between input and embedding.

• Sampling evolutionary trajectories t1, t2 ∼ T to create v1 = t1(x) and v2 = t2(x)
provide a simple way to reduce I (v1, v2) by selecting paired views with a greater
phylogenetic distance between them.

• Conservation serves a semantic proxy for downstream labels, and thus implicitly
performs supervised contrastive learning [4] while circumventing expensive
experimental label gathering.

Conclusion

Existing methods for protein embeddings rely heavily on the analogy between
protein sequences and natural language, leaving open the space for more
elegant methods which better accord with traditionally successful philosophies
in bioinformatics. We illustrate one such possibility, by viewing evolution as
a means to generate views in recent advances in contrastive pretraining.
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