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Contributions

Contextual word embeddings can perpetrate statistically significant
biases when applied to clinical notes in downstream tasks.

• BERT pretrained on clinical notes demonstrates statistically significant
gender bias in medically relevant unsupervised sentence completion tasks.
• BERT pretrained on clinical notes results in statistically significant

performance gaps when applied to downstream clinical tasks.
• These biases often favor the majority group with regards to gender,

language, ethnicity, and insurance status.

Motivation

• Non-contextual word embeddings such as word2vec have been shown to
capture societal biases in the training corpus (e.g. gender, ethnicity).
• Contextual word embeddings such as BERT have been shown to contain

gender bias on unsupervised tasks in the general domain.
• In a high-stake domain such as clinical notes, do BERT embeddings exhibit

bias when qualitatively and quantitatively examined?

Group Fairness Definitions

• Demographic parity:
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• Positive Equality:
• Definition: P(Ŷ = 1|Y = 1) = P(Ŷ = 1|Y = 1,Z = z)
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• Negative Equality:
• Definition: P(Ŷ = 0|Y = 0) = P(Ŷ = 0|Y = 0,Z = z)

• Metric: |( TNz
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• Multi-group Fairness Expansion:
• i∗j = argmaxi∈z |mj −mi |
• gapj = mj −mi
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MIMIC-III

• MIMIC-III consists of EHR records for 38,597 adults admitted to the ICU of
the Beth Israel Deconess Medical Center between 2001 and 2012.
• Contains about 2 million clinical notes of varying types.
• Contains patient demographic information such as gender, insurance status,

and self-reported ethnicity and language spoken.
• 58.7% male, 80.2% white, 88.5% English speakers, 56.1% medicare.

BERT Pretraining

• Initialized from SciBERT, which is pretrained on biomedical text.
• Used all notes except outpatient notes.
• Trained for one epoch (≈ 8 million samples) on sequences of length 128,

then one epoch (≈ 4 million samples) on sequences of length 512.

Downstream Tasks

• 57 binary classification problems.
• In-hospital Mortality: Using the first 48 hours of a patient’s notes,

predict whether they will die in hospital.
• Phenotyping using all notes: Using all notes, predict patient

membership in one of 25 HCUP CCS code groups. Also considers any acute
phenotype, any chronic phenotype, and any defined disease.
• Phenotyping using first note: Similar to the previous tasks, except only

using the first nursing or physician note.

Log Probability Scores

Given a fill-in-the-blanks prediction task, is there a statistically significant
difference between the likelihood of predicting male vs. female gendered
pronouns?

Male Female p-value n
Addiction 0.021 -0.515 p < 0.01 2048
Heart Disease 0.264 -0.352 p < 0.01 18000
Diabetes 0.205 -0.865 p < 0.01 3600
“Do Not Resuscitate” -0.636 -1.357 p < 0.01 256
Analgesics -0.077 0.105 0.48 480
HIV 0.616 -1.247 p < 0.01 3600
Hypertension 0.440 -0.402 p < 0.01 10800
Mental Illness 0.084 -0.263 p < 0.01 9000

Downstream Task Results

Significant gender gaps (positive is favoring female):

Significant language gaps (positive is favoring English speakers):

Parity Positive Equality Negative Equality
Ethnicity
White # Significant 17 3 8

# Favoring White 11 3 3
Black # Significant 20 11 11

# Favoring Black 10 1 5
Hispanic # Significant 9 6 21

# Favoring Hispanic 0 0 21
Asian # Significant 11 10 22

# Favoring Asian 5 3 21
Other # Significant 9 17 17

# Favoring Other 0 2 17

Insurance
Medicare # Significant 41 25 32

# Favoring Medicare 37 20 1
Private # Significant 30 13 25

# Favoring Private 1 2 24
Medicaid # Significant 31 20 23

# Favoring Medicaid 6 6 21


