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ABSTRACT

Generative models for protein design are gaining interest for their potential scientific impact.
However, protein function is mediated by many modalities, and simultaneously generating
multiple modalities remains a challenge. We propose PLAID (Protein Latent Induced
Diffusion), a method for multimodal protein generation that learns and samples from the
latent space of a predictor, mapping from a more abundant data modality (e.g., sequence) to
a less abundant one (e.g., crystallography structure). Specifically, we address the all-atom
structure generation setting, which requires producing both the 3D structure and 1D se-
quence to define side-chain atom placements. Importantly, PLAID only requires sequence
inputs to obtain latent representations during training, enabling the use of sequence
databases for generative model training and augmenting the data distribution by 2 to 4 orders
of magnitude compared to experimental structure databases. Sequence-only training also
allows access to more annotations for conditioning generation. As a demonstration, we use
compositional conditioning on 2,219 functions from Gene Ontology and 3,617 organisms
across the tree of life. Despite not using structure inputs during training, generated samples
exhibit strong structural quality and consistency. Function-conditioned generations learn
side-chain residue identities and atomic positions at active sites, as well as hydrophobicity
patterns of transmembrane proteins, while maintaining overall sequence diversity. Model
weights and code are publicly available at github.com/amyxlu/plaid.

1 INTRODUCTION

Figure 1: Function-conditioned
samples can recapitulate se-
quence motifs and produce pre-
cise side-chain orientations at ac-
tive sites, while maintaining low
global sequence identity.

Generative models of proteins promise to accelerate innovation in bioengi-
neering by proposing designs that achieve novel functions. Many protein
functions are mediated by their structure. This includes the identity, place-
ment, and biophysical properties of both side-chain and backbone atoms,
collectively referred to as the all-atom structure. However, to know which
side-chain atoms to place, one must first know the sequence; all-atom
structure generation thus can be seen as a multimodal problem requiring
simultaneous generation of sequence and structure.

While generative modeling for protein structure has seen rapid recent
progress, several important challenges still remain: (1) Existing protein
structure and sequence generation methods often treat sequence and struc-
ture as separate modalities; structure-generation methods often produce
only backbone atoms [1, 2, 3, 4]. (2) Methods that do address all-atom
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Figure 2: PLAID unconditionally generates diverse, high-quality all-atom structures, despite using only
sequences for training the generative model.

design often require alternating between structure prediction and inverse-folding steps using an external
model [5, 6]. (3) Evaluations often emphasize in silico oracle-based designability and structure-conditioning,
with limited advancement in flexible controllability [1, 6]. (4) Methods that rely on experimentally-resolved
structure databases [7] have a strong bias toward proteins that are crystallizable [1, 2, 8, 6, 5]. (5) Methods
that ingest structure as inputs and/or rely on equivariance might face challenges in leveraging progress in
hardware-aware neural network architectures for scalable training and inference [9, 10, 11].

Figure 3: Size comparison of
datasets drawn to scale. Se-
quence databases provide signifi-
cantly more comprehensive cov-
erage of the natural protein space
than structural databases.

Contributions To address these challenges, we introduce PLAID
(Protein Latent Induced Diffusion). Our principal demonstration is
that multimodal generation can be achieved by learning the latent space
of a predictor from a more abundant data modality (e.g., sequence) to
a less abundant one (e.g., crystal structure). In particular, we focus on
ESMFold [12] and all-atom structure generation, presenting a controllable
diffusion model capable of simultaneous sequence and all-atom pro-
tein structure generation while requiring only sequence inputs during
training.

Because the training dataset can be defined by sequence databases rather
than structural ones, this approach provides better coverage of the viable
protein space traversed by evolution, enlarging experiment datasets avail-
able for training by 2 to 4 orders of magnitude (Figure 3). This also allows
us to leverage structural information encoded in the pretrained weights
rather than training data, and increases the availability of sequence annotations for controllable generation.

As a motivating demonstration, we examine compositional control across the axes of function and organism.
Sequence databases also offer a wider range of annotation types, such as natural language abstracts. We show
that PLAID can unconditionally generate diverse, high-quality samples (Figure 2). Function-conditioned
samples can learn both the sequence motifs at active sites and the orientations of side-chains to be placed
(Figure 1). We also demonstrate how motif scaffolding can be accomplished with this paradigm (Appendix
Figure 17). The method is designed to be easily adaptable to expanding sequence datasets, leverage improved
inference and training infrastructure for transformer-based models [13, 14, 11], and increasingly multimodal
protein folding models, such as those that include nucleic acids and molecular ligand binding [15, 16].
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Figure 4: Overview of PLAID. (A) ESMFold [12] latent space. The latent space p(x) represents a joint
embedding of sequence and structure. (B) Latent diffusion training. Our goal is to learn and sample from
pθ(x), following the diffusion formulation [17]. To improve learning efficiency, we use the CHEAP [18]
encoder he(·) to obtain a compressed embedding x′ = he(x), so that the diffusion objective involves sampling
from pθ(he(x)). (C) Inference. To obtain both sequence and structure at inference time, we use the trained
model to sample x̃′ ∼ pθ(x

′), then uncompress using the CHEAP decoder to obtain x̃ = hd(x̃′). This
embedding is decoded into the corresponding amino acid identities using a frozen sequence decoder trained
in CHEAP [18]. The sequence of residue identities and x̃ are used as input to the frozen structure decoder
trained in ESMFold [12] to obtain the all-atom structure. (D) DiT block architecture. We use the Diffusion
Transformer (DiT) [19] architecture with adaLN-zero DiT blocks to incorporate conditioning information.
Classifier-free guidance is used to incorporate both the function (i.e., GO term) and organism class label
embeddings [20]. Block architecture schematic adapted from Peebles and Xie [19].

2 RELATED WORK

Generative Modeling for Proteins State-of-the-art diffusion models for designing protein structures
have primarily focused on generating novel backbone folds, with controllability typically governed by
secondary structure or used for scaffolding a known motif [1, 2, 4, 21]. Evaluation of these models focuses
on fold stability and novelty, often involving oracle models [22, 12, 23, 24] for structure prediction and
backbone-conditioned sequence design. However, to synthesize a protein, the sequence is required, and
not all sampled structures have a corresponding sequence. To address this, "designability" is used as a
metric to assess if a computationally-predicted sequence can be determined for folding into the proposed
structure. Few mechanisms exist to enforce designability during training. Methods also exist for designing
sequences [25, 26, 27, 28, 3], sometimes conditioned by the structure [29]. The structure can be constructed
from these generations using a protein folding model, but the generative model itself does not produce atomic
positions, increasing tool complexity and inference runtime.

Multimodal Sequence-Structure and All-Atom Generation All-atom generation can be framed as a
multimodal problem, where the 1D protein sequence and 3D protein structure are jointly produced. Existing
works [5, 6] often generate only one modality – structure or sequence – per diffusion step, relying on an
external predictor to produce the other. Multiflow [8] enables co-generation without external tools, but does
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Figure 5: (A) When noise is added via a cosine schedule [35] (true signal-to-noise ratio (SNR) curve overlaid
in orange) to the uncompressed latent space x, the sequence and structure remain uncorrupted until the final
forward diffusion timesteps, meaning most sampled timesteps are trivial for learning. After compression,
noising in the compressed latent space x′ = he(x) better aligns with the true SNR in the sequence and
structure space, thereby improving the effectiveness of the diffusion task. (B) Schematic of cross-consistency
and self-consistency metrics used to evaluate multimodal consistency and unimodal generation quality.

not produce side-chain atom positions. Some methods focus on specific protein subclasses, such as antibody
design [30, 31]. While effective within these domains, antibodies represent a narrow subset of protein space,
and such models often struggle to generalize across diverse protein families. Concurrently with this work,
ESM3 [32] was developed to generate in a shared sequence-structure space and condition on InterPro [33],
many of which are derived from GO terms [34]. However, the ESM3 tokenizer is trained on structure datasets
rather than sequence databases, and cannot perform all-atom generation. PLAID can easily extend to the
tokenized setting, as CHEAP [18] embeddings include a tokenized variant.

3 PLAID: PROTEIN LATENT INDUCED DIFFUSION

Notation A protein is composed of amino acids. A protein sequence s := {ri}Li=1 is often represented
as a string of characters, with each character denoting the identity of an amino acid residue ri ∈ R, where
|R| = 20. Each unique residue r can be mapped to a set of atoms r := {aj}Mr

j=1, where each aj ∈ R3 is
the 3D coordinate of an atom, and the number of atoms Mr may differ depending on the residue identity. A
protein structure Ω := {ri}Li=1 consists of all atoms in the protein and therefore implicitly contains s.1

All-Atom Structure vs. Backbone-Only Structure The all-atom structure Ω requires knowledge of the
amino acid identities at each position to specify the side-chain atoms. To reduce complexity, protein structure
designers sometimes work with the backbone atoms Ωbackbone ⊂ Ω only, which include only the N , C, and
Cα atoms and are generally sufficient to define the protein fold.2

1In practice, to make use of array broadcasting, a standard M is selected for all residues, with an associated one-hot
mask to specify which atoms are present for a given residue. We treat each structure as a matrix Ω ∈ RL×M×3. Following
prior work [36, 12], we use the atom14 representation where M = 14.

2Backbone-only structures induce 2(L− 1) degrees of freedom arising from the ϕ and ψ angles (assuming that ω
angles are held constant at 180◦). Depending on the residue identity, there may be 0 to 4 additional rotamer angles
associated with the side chains. Therefore, even when the sequence is known, there may be up to 4L additional degrees of
freedom necessary for all-atom structure prediction.
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3.1 DEFINING p(SEQUENCE,STRUCTURE)

We begin with the motivation that sampling directly from p(s,Ω) without implicitly factorizing it into
p(Ω)p(s|Ω) (e.g., Protpardelle [5]) or p(s)p(Ω|s) (e.g., ProteinGenerator [6]) circumvents the difficulty in
all-atom generation of not knowing which side-chain atoms to place; one can choose a latent manifold where
residues do not need to be explicitly specified during iterative generation. Avoiding reliance on external
prediction tools is computationally cheaper and avoids amplifying errors.

Our goal is to characterize a distribution p(x) over X that encapsulates both sequence and structure infor-
mation, such that there exist mappings x = ϕs(s) and x = ϕΩ(Ω), where x ∈ X . In other words, both the
sequence s and its corresponding structure Ω should map to the same latent embedding x.

Protpardelle

ProteinGenerator

PLAID

Multiflow

Protpardelle

>len600_samp97

AGGGGGGGGGGGGGGGGGGGGGGGGGLGLGLLLPPAGL...

>len600_samp98

PPPPGGAGGGGAAAALAGGSPGGPPGGGGGGGGGGGGG...

>len600_samp99

PPGPALPPSPGPGGVPPPPPLPPPPLPGGAPPAGGGLL...

ProteinGenerator

>len600_000097

GAAGLTAAAAVVGAAAAAGAAAAAALAAAAGAGAAAAA...

>len600_000098

AGAAGAAAAAAAAAAGAAAAGAGGGAGGAAAAAAAAAG...

>len600_000099

VAAAQAVQGAIAAAAALAATAALGLTAAGIAAPLLALV...

Multiflow

>len600_sample_97

LLGGLLGGLLGGAAGGAGAGAAAAGGGAVGVGVAGAVT...

>len600_sample_98

ADAATLTVGGGGTGGGGGAGGALGGAAAGGGGRVTLVV...

>len600_sample_99

AGGGAGLAGGAGGAGGAAAAAAAAAAAAAGAGGGAAAA...

PLAID

>len600_sample97

PDMGTVLGLAHSVGHLDFKTPDLSVADLETNLALLAAH...

>len600_sample98

FEMFDDKGGDLWERAASSGQLLIDVAYLANNGLRDGAT...

>len600_sample99

GNGGQARGTDDPLTHALQTLFQSAALDQSLQGDPENAV...

Figure 6: Qualitative comparison of samples. (Left)
PLAID samples are structurally diverse, whereas base-
line methods demonstrate mode collapse towards com-
mon structures such as TIM barrels and α-helix bun-
dles at L = 256. (Right) Baseline methods gener-
ate sequences which have more repeats, especially at
longer sequence lengths. Shown are sequences with
L = 600, truncated for visualization.

To achieve this, we follow the definition of a joint
embedding of sequence and structure in Lu et al.
[18]. By defining x as the latent space of a pro-
tein folding model p(Ω|s), we can establish these
mappings. The trunk of the model provides x =
ϕESM(s), and the structure module head provides
Ω = ϕSM(x). If we consider an implicit inverse
function of the structure module such that x =
ϕ−1

SM(Ω), then we have:

x = ϕs(s) = ϕΩ(Ω)

This satisfies our requirement for mappings that map
both s and Ω to the same latent embedding x.

Overview of ESMFold Briefly, ESMFold [12] has
two main components: a protein language model
component x = ϕESM(s) that captures evolutionary
priors via the masked language modeling (MLM)
loss, and a structure module component Ω = ϕSM(x)
that decodes these latent embeddings into a 3D struc-
ture. For the rest of this work, the “latent space of
ESMFold” refers to the x ∈ RL×1024 representation
at the layer just prior to the structure module, where L is the length of a given protein. We choose this layer
due to the observations in Lu et al. [18] (also see Section 3.2.1) that the pairwise input at inference time to the
structure module is initialized to zeros, such that this sequence embedding contains all information necessary
for structure prediction (Figure 4A and Appendix B).

3.2 SAMPLING ALL-ATOM STRUCTURE

Latent Generation Our goal is to learn pθ(x) ≈ p(x), where θ is the set of parameters of the model learned
through diffusion training (Figure 4C). Then, after training, we can sample x̃ ∼ pθ(x) (Figure 4C). To do
so, we use diffusion models [17, 37] with some modifications (described in ablation Table 1). Classifier-free
guidance is used to condition the model by GO term and organism classes, as further described in Section 3.3
and Appendix A.
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Sequence Decoder To obtain the sequence, we need an implicit inverse mapping of ESM2 to get s̃ =
ϕ−1

ESM(x̃).3 This mapping is easy to approximate by training a sequence decoder, since ESM2 was trained via
the masked language modeling (MLM) loss. The sequence decoder ϕ−1

ESM is trained and provided in Lu et al.
[18], achieving a validation accuracy of 99.7% on a held-out partition of UniRef [38]. Note that s̃ must be
decoded first, as it determines the side-chain atoms to be placed in Ω̃.

Structure Generation To obtain the structure from the sampled latent embedding, we use the frozen
ESMFold structure module weights to compute Ω̃ = ϕSM(x̃, s̃) (Figure 4C). Since the output of ϕSM is
all-atom, the sampled Ω̃ is also all-atom.

3.2.1 LATENT SPACE COMPRESSION

In initial experiments, we found that directly learning pθ(x) without compression performed poorly (results
shown in Appendix Figure 12). We suspected that this might be due to the high dimensionality of x ∈ RL×1024.
For proteins with length L = 512 (the length cutoff used in this work), this corresponds to a high-resolution
image synthesis problem similar to those encountered in image diffusion literature.4 Therefore, we mirror
works in this literature and perform diffusion in the latent space of an autoencoder, x′ = he(x), such that the
dimensions of x′ are much smaller [41].

We use the CHEAP autoencoder [18], aiming to learn pθ(x
′) ≈ p(x′), where x′ = he(x). Noise is added to

x′ during the forward diffusion process and removed during denoising (Figure 4B). Based on results in Lu
et al. [18], we choose a compressor that compresses from 1024 → 32 to balance the dimension of x′ and
reconstruction performance. We also downsample by 2× along the length for better memory efficiency,
allowing us to train up to longer sequences while maintaining parameter scalability. More information on
CHEAP can be found in Lu et al. [18] and Appendix B.

At inference time, we begin by sampling the compressed latent variable x̃′ ∼ pθ(x
′) and then decompress

it to obtain x̃ = hd(x̃
′). We then use frozen decoders to obtain the sequence s̃ = ϕ−1

ESM(x̃) and the
structure Ω̃ = ϕSM(x̃, s̃). Figure 5A shows that when noise is added to the latent space, the sequence and
structure remain unaltered until later timesteps. By adding noise in the compressed latent space, the resulting
corruptions in sequence and structure space more closely match the true signal-to-noise ratio. Considering the
importance of diffusion noise schedules for sample performance [42], we suspect that this factor contributes
to the improved results observed when diffusing in the compressed latent space in our experiments.

3.3 DATA AND TRAINING

Choice of Sequence Database The PLAID paradigm can be applied to any sequence database. As of 2024,
sequence-only databases range in size from UniRef90 [38] (193 million sequences) to metagenomic datasets
such as BFD [43] (2.5 billion sequences) and OMG [44] (3.3 billion sequences). We use Pfam because it
provides more annotations for in silico evaluation and because protein domains are the primary units of
structure-mediated functions. More information can be found in Appendix C.

3The embedding x, defined just before the structure module, is actually a linearly projected version of the ESM2
embeddings. If we defined x as the ESM2 embeddings directly, we could use the decoder from ESM2’s MLM training.
However, since we use this modified embedding space, an approximation is necessary.

4While it may be possible to learn pθ(x) without latent space compression, such as borrowing other techniques from
high-resolution image synthesis such as cascaded diffusion [39] or specialized attention architectures [40], we found that
compressing the latent space before diffusion training [41] was more effective than tuning diffusion hyperparameters in
the original space.

6



Preprint

Compositional Conditioning by Function and Organism Gene Ontology (GO) is a structured hierarchical
vocabulary for annotating gene functions, biological processes, and cellular components across species [45,
46]. We examine all Pfam domains that have a Gene Ontology mapping, resulting in 2,219 GO terms
compatible with our model. For domains with multiple associated GO term labels, the GO term that is least
prevalent in our dataset is selected, to encourage the selected terms to be more specific.

We also examine all unique organisms in our dataset, identifying 3,617 organisms. Models are trained using
classifier-free guidance [20]. The conditioning architecture is described in Figure 4D. More details can be
found in Appendix A.

Table 1: Ablation results for metrics defined in Section 4.
Configuration ccTM scTM Ppl. Seq.

Div. %
Struct.
Div.%

A cosine noise sched. & pred. noise 0.54 0.55 16.97 0.98 0.86
B A + v-diffusion 0.52 0.53 17.37 0.98 0.89
C A + MinSNR 0.59 0.59 16.76 0.97 0.86
D A +B + C + sigmoid noise sched. 0.56 0.58 16.88 0.92 0.86
E D + self-conditioning 0.70 0.65 15.38 0.93 0.76
F E + no cond drop 0.57 0.57 17.28 0.97 0.85

Architecture We use the Diffusion
Transformer (DiT) [19] for the denoising
task. This approach enables more flexi-
ble options for fine-tuning on mixed input
modalities, as protein structure prediction
models begin to incorporate complexes
with nucleic acids and small-molecule lig-
ands. It also better leverages transformer
training infrastructure [47, 13, 48, 14, 9].

In early experiments, we found that allocating available memory to a larger DiT model was more beneficial
than using triangular self-attention [22]. We train our models using the xFormers [47] implementation
of [49], which provided a 55.8% speedup and a 15.6% reduction in GPU memory usage during our inference-
time benchmarking experiments compared to a standard implementation using PyTorch primitives (see
Appendix F). We train two versions of the model with 100 million and 2 billion parameters, respectively, both
for 800,000 steps. More details are provided in Appendix A.

Diffusion Training and Inference-Time Sampling We use the discrete-time diffusion framework proposed
by Ho et al. [17], employing 1,000 timesteps. To stabilize training and improve performance, we incorporate
additional strategies: min-SNR reweighting [50], v-diffusion [51, 52], self-conditioning [53, 54], a sigmoid
noise schedule [42], and exponential moving average (EMA) decay. Ablation results are shown in Table 1.

For sampling, unless otherwise noted, all results use the DDIM sampler [35, 37] with 500 timesteps. We
use c = 3 as the conditioning strength for conditional generation; however, we find (Appendix Figure 16C)
that sample quality is not strongly affected by this hyperparameter. We also find that DPM-Solvers [55]
can achieve comparable results with 10× fewer steps in scenarios where speed is a concern (see Appendix
Figure 16), but in this work, we prioritize sample quality. More details on sampling methodology can be
found in Appendix D, and Appendix F provides benchmarks on sampling speed.

4 EVALUATION

We outline metrics used to examine unconditional generation here. For evaluations that depend on hyperpa-
rameter settings, details are provided in Appendix E). For clarity, a schematic of cross- and self-consistency
metrics is also shown in Figure 5B. For distributional conformity scores, each biophysical property is outlined
in greater detail in Appendix E.1.

1. Multimodal Cross-Consistency: When the generated sequence is folded, does it match the generated
structure? [Cross-consistency TM-Score (ccTM), cross-consistency RMSD (ccRMSD).] When the gener-
ated structure is inverse-folded into a sequence, does it match the generated sequence? [Cross-consistency
sequence recovery (ccSR).] What percentage of generated samples are designable? [ccRMSD < 2Å.]
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Figure 7: Secondary structure composition analysis across protein generation methods. Distribution
of α-helix and β-sheet content in protein structures from natural proteins and different generation methods.
Each point represents a single structure, with coordinates indicating the fraction of residues in α-helices
(x-axis) and β-sheets (y-axis). Natural proteins show a characteristic distribution, which PLAID most closely
approximates. In contrast, ProteinGenerator, Protpardelle, and Multiflow exhibit biases in their secondary
structure distributions, with clustering in the high α-helix, low β-sheet region, especially regions where
β-sheet fraction is zero.

2. Unimodal Sample Quality: What is the quality of generated sequence and structure when examined
independently?

(a) Structure. If we inverse-fold a generated structure into a sequence and fold the result with
OmegaFold [56], is it consistent with the original? [Self-consistency TM-Score (scTM), self-
consistency RMSD (scRMSD).]

(b) Sequence. If we fold a generated sequence and inverse-fold the result, is it consistent with the
original? [Self-consistency sequence recovery (scSR).] Do generated sequences have low perplexity
on next-token prediction models trained on natural proteins? [Perplexity (Ppl.) under RITA XL [28].]

3. Distributional Conformity: Do samples exhibit sensible biophysical parameters for real-world charac-
terization? In other words, how similar are the distributions of biophysical properties between generated
proteins and real proteins? Distributional similarity to natural proteins has been shown in Frey et al. [25]
to be highly correlated with experimental expressibility. [Distributional conformity scores.]

4. Diversity: After clustering by sequence using MMseqs [57] and by structure using Foldseek [58], how
many distinct clusters can we observe? [# seq. clusters, # struct. clusters.]

5. Novelty: Among designable samples, how similar are generated structures to their closest structural
match to real proteins in PDB100 using foldseek easy-search? [Foldseek TMScore.] What
about sequence identity to the closest mmseqs easy-search neighbor in UniRef90 [38] after pairwise
alignment? [MMseqs seq id. %.]

5 EXPERIMENTS

5.1 UNCONDITIONAL GENERATION

Following prior work demonstrating the effect of protein length on performance [1, 5, 8], we sample 64
proteins for each protein length between {64, 72, 80, ..., 512}, for a total of 3648 samples. Note that for
completeness, we also compare against Multiflow [8] in (Figure 8 and Appendix Figure 15). However,
since Multiflow does not produce side chain positions, it addresses a problem with fundamentally different
complexity as PLAID, ProteinGenerator [6], and Protpardelle [5].

As shown in Figure 8, the degradation in PLAID’s performance with increasing protein length is less
pronounced than Multiflow and baseline all-atom methods. At longer lengths, PLAID better balances quality
and diversity, possibly because the expanded dataset includes more samples of large proteins. Additionally,
the flexible Diffusion Transformer [19] architecture and lengthwise downscaling [18] facilitates training on
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Figure 8: Analysis of structural quality and diversity across protein lengths. Comparison of natural
proteins and different generation methods, showing structural quality (ccRMSD, teal points) and diversity
(purple line, measured as ratio of unique structural clusters to total samples) for proteins of varying lengths
(64-512 residues). The red line at 2Å indicates the designability threshold. While natural proteins and PLAID
samples maintain consistent metrics across lengths, ProteinGenerator and Protpardelle show length-specific
mode collapse, and Multiflow exhibits declining diversity at longer sequences. Analysis performed on 64
samples per length interval.

longer sequences. Baseline methods also exhibit pronounced mode collapse at specific lengths (Figure 8
and 6). Furthermore, secondary structure diversity is closer to the profile of natural proteins in PLAID versus
baseline methods; Figure 7 shows that existing protein structure generation models often struggle to produce
samples with high β-sheet content.

Table 2 compares the performance of different models across various consistency and quality metrics for
all-atom protein generation, aggregated across all lengths. PLAID generates samples with high cross-modal
consistency between generated sequences and structures, possibly due to sampling directly from p(s,Ω)
(Table 2). When examining unimodal quality, ProteinGenerator achieves the best self-consistency TM-
score and pLDDT; it should be noted that ProteinGenerator uses RoseTTAFold [59] to produce structures
at each step, and that the self-consistency TM-score for natural proteins is also imperfect. For sequence
quality, all samples (including natural proteins) perform poorly on oracle-based metrics. PLAID comparably
performs worse on scSR and perplexity under RITA XL [28]; however, as shown in Figure 6, some baseline
sequence samples contain high levels of repeats, which sometimes lead to lower perplexity, despite being less
biologically natural. Distributional conformity metrics (Table 3) offer an alternative for assessing sequence
quality by examining biophysical patterns rather than token-level likelihoods.

Table 3 assesses diversity, novelty, and naturalness. We examine the diversity and quality trade-off by
comparing the number of distinct designable sequence and structure clusters, where designability is defined
as ccRMSD < 2Å. Among all-atom models, PLAID produces the highest number of distinct and designable
samples in both sequence and structure space.

Table 2: Comparison of model performance across consistency and quality metrics. Bold values show best
performance among all-atom generation models. pLDDT refers to the confidence score directly returned by
the structure trunk of the generative model; for models which do not produce a pLDDT metric, N/A is used.

Cross-Modal Consistency Structure Quality Sequence Quality

ccTM
(↑)

ccRMSD
(↓)

ccSR
(↑)

% ccRMSD
< 2Å (↑)

scTM
(↑)

pLDDT
(↑)

Beta sheet
% (↑)

scSR
(↑)

Ppl.
(↓)

ProteinGenerator 0.58 11.86 0.28 0.08 0.72 69.00 0.04 0.40 8.60
Protpardelle 0.44 24.28 0.22 0.00 0.57 N/A 0.11 0.44 8.86
PLAID 0.69 9.47 0.26 0.32 0.64 59.46 0.13 0.27 14.61

Natural 1.00 0.07 0.39 1.00 0.84 84.51 0.13 0.39 7.40
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Table 3: Diversity, novelty, and distributional conformity metrics across models. Bold values show best
performance among all-atom generation models. Descriptions of each biophysical parameter for distributional
conformity is described in Appendix E.1.

Diversity Novelty Distributional Conformity (Wasserstein Distance)

# Des.
(↑)

# Des.
Seq.

Clusts.
(↑)

# Des.
Struct.
Clusts.

(↑)

MMseqs
Seq Id%

(↓)

Foldseek
TMScore

(↓)

MW
(↓)

Aroma-
ticity
(↓)

Dipeptide
Instability
Index (↓)

Iso-
electricity

(↓)

Hydro
pathy

(↓)

Charge
at

pH=7
(↓)

ProteinGenerator 309 309 309 0.57 0.57 9.54 0.07 14.55 1.42 0.31 6.12
Protpardelle 0 0 0 0.56 0.72 10.4 0.07 8.61 1.99 0.37 8.58
PLAID 1171 809 522 0.60 0.67 0.62 0.01 1.98 0.49 0.28 2.71

Natural 3570 1362 600 0.81 0.87 0.0 0.0 0.0 0.0 0.0 0.0

Novelty is measured by sequence similarity (sequence identity) and structural similarity (backbone TM-
Score), with lower values indicating higher novelty. Although prior methods achieve the lowest sequence and
structural similarities (i.e., higher novelty), this may be confounded by low-quality samples that artificially
score high on novelty metrics.

The distribution of biophysical features for PLAID generations is closer to that of natural proteins, potentially
due to the removal of biases toward structure in its training data. Across molecular weight (MW), ratio of
aromatic amino acids, dipeptide-based instability index [60], hydropathy index (GRAVY) [61], isoelectric
point, and charge at pH = 7, the distribution of PLAID samples is much closer to that of natural proteins
than to those of baseline models. We consider distributional conformity to be an additional axis of real-world
expressibility, as it has been shown in Frey et al. [25] to be heavily correlated with real-world expressibility.
More information is in Appendix E.1.

5.2 CONDITIONAL GENERATION

Computational evaluation of function- and organism-conditioned generative models presents a conundrum:
lower similarity is a favorable heuristic in machine learning, since it indicates that the generative model did
not merely memorize the training data. From a bioinformatics perspective, however, conservation is key to
function; taxonomic membership can be difficult to validate, given the high degree of similarity between
homologs. In our experiments, we look for high structural similarity to evaluate function conditioning
and low sequence similarity to penalize exact memorization.

Results shown in Figure 9 demonstrate that function-conditioned proteins possess known biological character-
istics, such as conserved active site motifs and membrane hydrophobicity patterns. Despite high levels of
conservation at catalytic sites, global sequence diversity is high, suggesting that the model has learned key
biochemical features associated with the function prompt without direct memorization.

We further examine the Sinkhorn distance between function-conditioned generated latent embeddings and
real proteins with this GO term annotation, randomly sampled from a held-out validation set that was unseen
during training (Figure 10). This parallels the FID metric used in image generation, where one calculates the
Fréchet Distance between the Inception embedding of a set of generated images and a set of random real
images. Since we generate latent representations, we directly compare the distance between the sampled
latent and heldout validation proteins in CHEAP [18] embedding space. We also use Sinkhorn Distance
rather than Fréchet Distance to be more robust to smaller sample sizes, so that we can perform this analysis
for GO term classes with fewer samples. It also assesses conditional generations independent of the sequence
and structural decoders, and controls for memorization by comparing to a holdout dataset unseen during
training. For comparison, the Sinkhorn distance between random real proteins from the validation set and the
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Figure 9: PLAID enables function-guided protein generation while preserving critical structural motifs.
Additional examples provided in Appendix 13. (A) Generated proteins capture sequence motifs and
approximate side-chain orientations at active sites despite low sequence identity. Each panel shows
a PLAID-generated structure aligned with its closest PDB structural neighbor (identified via Foldseek)
containing a bound ligand or substrate. RMSD and sequence similarity metrics are calculated globally. (B)
Generated membrane proteins exhibit biophysically realistic properties. (Left) Generated transmembrane
proteins display appropriate spatial distribution of hydrophobic and hydrophilic residues, with hydrophobic
residues concentrated in membrane-spanning regions. Multiple independent samples demonstrate consistent
recapitulation of these physical constraints. (Right) Generated G protein-coupled receptors (GPCRs) show
the characteristic seven transmembrane helix architecture. DeepTMMHMM topology predictions confirm the
expected transmembrane organization.
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Prompt:
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Prompt:
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Figure 10: (Left) For each unique GO term in the validation set, we examine the Sinkhorn distance between
generated samples and real proteins in the heldout subset in this class. For reference, we also calculate the
Sinkhorn distance between random real proteins to the heldout subset. (Right) t-SNE reduction of generated
embeddings, colored by the organism used for conditioning.

function-conditioned generations is also evaluated. Conditional generations generally have lower Sinkhorn
distances to validation proteins with the same annotation than random samples, suggesting that the desired
latent information is captured in the embedding. In Appendix Figure 16, we consider how conditioning scale
might affect sample quality and possible GO term characteristics that might be influencing the difference in
Sinkhorn distance between function-conditioned generations and random proteins.

To probe into organism conditioning abilities, Figure 10 shows t-SNE plots of generated embeddings
colored by organism. Organisms that are more distantly related phylogenetically, such as Glycine max (i.e.,
soybean) and E. coli, form more distinct clusters than those more closely related evolutionarily, such as
human and mouse. This suggests that function- and organism-conditioned samples have been imbued with
desired characteristics. This embedding-level analysis provides an early investigation into organism-specific
conditioning abilities. We observe, for human organism conditioned samples in Figure 9, that for 66.5%
of samples, the closest mmseqs easy-search neighbor also come from Homo sapiens. We leave it as
future work to do a more in-depth analysis of organism conditioning, since nearest-neighbor taxonomic
analyses are very sensitive to search settings, and favors overrepresented species in the database. Moreover,
assessing taxonomic origins for structures is complicated by the high structural conservation across kingdoms.
A suitable follow up for this analysis could be for specialized organism-conditioning use cases, such as
humanization or expression system specific protein characterization.

PLAID is fully compatible with motif scaffolding, and with binder design when trained on sequence complexes.
Appendix Figure 17 demonstrates how motif scaffolding can be used with PLAID, by holding parts of the
motif constant at each reverse diffusion step during latent generation. We focus on enabling new capabilities
in all-atom generation in this work and leave further exploration of this capability as future work.

6 DISCUSSION

We propose PLAID, a paradigm for multi-modal, controllable generation of proteins by diffusing in the latent
space of a prediction model that maps single sequences to the desired modality. Our method is designed to
leverage progress in data availability, model scalability, and sequence-to-structure prediction capabilities.
To this end, we chose an implementation that makes use of fast attention kernels [47] for transformer-based
architectures, and used GO terms as a proxy for the vast quantities of language annotation that are paired with
sequence databases.
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It is straightforward to expand PLAID to many downstream capabilities. Although we examine ESMFold [12]
in this work, the method can be applied to any prediction model. There is rapid progress [16, 15, 62, 63, 64]
in predicting complexes from sequence, and diffusing in the latent space of such models would allow using
the frozen decoder to obtain more modalities than just all-atom structure. While we show a demonstration
that motif scaffolding is possible in Appendix Figure 17, this capability can be greatly extended, including
to binders and complexes. We use Pfam and GO terms as a proof-of-concept and focus on enabling new
capabilities, though more “traditional" in-painting style tasks can also be used.

A limitation of PLAID is that performance can be bottlenecked by the prediction model from which the
frozen decoders are derived. Here, we rely on the optimism that such models will continue to improve. With
explicit fine-tuning for latent generation (e.g., training CHEAP and the structure decoder end-to-end), model
performance can likely be improved. Furthermore, since the current structure decoder is deterministic, it does
not sample alternative conformations. A solution is to use a decoder that returns a distribution over structural
conformations instead; such a model might naturally be developed with progress in the field, or be explicitly
fine-tuned. Additionally, the GO term one-hot encoding used here does not take into account the hierarchical
nature of the Gene Ontology vocabulary, nor that a protein might have several relevant GO terms. This can be
fixed by using a multi-class conditioning scheme instead. Finally, the classifier-free guidance scale can be
separated for the organism and function conditions, since the two may require different guidance strengths in
real-world use cases. These limitations will be examined in future work.
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APPENDIX

A ADDITIONAL TRAINING DETAILS

We train two variants of the model: a 2B version and a 100M version, both with the memory-efficient attention
implementation in xFormers, using float32 precision. A learning rate of 1e-4 was used, with cosine annealing
applied over 800,000 steps. The xFormers memory-efficient attention kernel requires input lengths to be a
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multiple of 4. Since we also apply an upsampling factor of 2, the actual inference length must be a multiple
of 4. During training, the maximum sequence length we use is 512, based on the distribution of sequences in
Pfam and a shortening factor of 2 based on results in Lu et al. [18].

Following Ho and Salimans [20], with puncond = 0.3, the class label is replaced with the ∅ unconditional
token. This is sampled separately for both function and organism. Note that not all data samples will have an
associated GO term; we use the ∅ token for those cases as well. At inference time, to generate unconditionally
(for either or both of function and/or organism), we use the ∅ token for conditioning.

B CHEAP COMPRESSION DETAILS

Briefly, the CHEAP encoder and decoder use an Hourglass Transformer [65] architecture that downsamples
lengthwise, as well as downprojects the channel dimension, to create a bottleneck layer, the output of
which is our compressed embedding. The entire model is trained with the reconstruction loss MSE(x, x̂).
Results in Lu et al. [18] show that structural and sequence information in ESMFold latent spaces are in fact
highly compressible, and despite using very small bottleneck dimensions, reconstruction performance can
nonetheless be maintained when evaluated in sequence or structure space.

Based on reconstruction results in Lu et al. [18], we choose x′ ∈ RL
2 ×32 with L = 512, which balances

reconstruction quality at a resolution comparable to the size of latent spaces in image diffusion models [41].
Dividing the length in half allows us to better leverage the scalability and performance of Transformers, while
managing their O(L) memory needs.

The CHEAP module involves a channel normalization step prior to the forward pass through the autoencoder.
We find that the distribution of embedding values is fairly “smooth" here (Figure 11). Though the original
Rombach et al. [41] paper was trained with a KL constraint to a Gaussian distribution, we use the embedding
output as is. CHEAP embeddings were also trained with a tanh layer at the output of the bottleneck; this
allows us to clip our samples between [−1, 1] at each diffusion iteration, as was done in original image
diffusion works [17, 20, 35, 66]. We found in early experiments that being able to clip the output values was
very helpful for improving performance. Without using the CHEAP compression prior to diffusion, sample
quality was poor, even on short (L = 128) generations, as shown in Figure 12.

C DATA

We use the September 2023 Pfam release, consisting of 57,595,205 sequences and 20,795 families. PLAID is
fully compatible with larger sequence databases such as UniRef or BFD (roughly 2 billion sequences), which
would offer even better coverage. We elect to use Pfam because sequence domains have more structure and
functional labels, making it easier for in silico evaluation of generated samples. We also hold out about 15%
of the data for validation.

Approximately 46.7% of the dataset (N = 24, 637, 236) is annotated with a GO term. Using the publicly
available mapping as of July 1, 2024, we count all GO occurrences; for each Pfam entry with multiple GO
entries, we pick the one with the fewest GO occurrences to encourage more descriptive and distinct GO
labels.

The Pfam-A.fasta file available from the Pfam FTP server includes the UniRef code of the source organ-
ism from which the Pfam domain is derived. The UniRef code furthermore includes a 5-letter “mnemonic" to
denote the organism. We examine all unique organisms in our dataset and find 3,617 organisms.
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Figure 11: Visualizing the original ESMFold latent space before normalization, after per-channel normaliza-
tion, and after compression. The value distribution of p(x′) is fairly smooth and “Gaussian-like," making it
amenable to diffusion.

scTM vs. pLDDT ccTM vs. scTM

ccSR vs scSR

Figure 12: Results when running PLAID on the ESMFold latent space naively without CHEAP compression,
for proteins of length 128. There is a tendency to generate repeated sequences, and quality is low compared
to baselines.

D SAMPLING

Inference-time sampling hyperparameters provide the user with additional control over quality and sampling
speed trade-offs. PLAID supports the DDPM sampler [17] and the DDIM sampler [35], as well as the
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improved speed samplers from DPM++ [55]. We find that using the DDIM sampler with 500 timesteps using
either the sigmoid or cosine schedulers works best during inference, and reasonable samples can be obtained
using the DPM++2M-SDE sampler with only 20 steps. Experiments shown here use the DDIM sampler with
the sigmoid noise schedule at 500 timesteps.

Note that the performance bottleneck is found mostly during the latent sampling and structure decoding
(which depends on the number of recycling iterations [22, 12] used); however, these two processes can be
easily decoupled and parallelized, which cannot be done in existing protein diffusion methods. Furthermore,
it allows us to prefilter which latents to decode using heuristic methods, and decode only those latents to
structure, which would boost performance for nearly the same computational cost. We do not empirically
explore this in this paper to provide a fair comparison, and because the filtering criteria would vary greatly by
downstream use.

E EVALUATION DETAILS

For all benchmarks and models, we use default settings provided in their open-source code. For Protein-
MPNN [23], we use the v_48_002 model with a sampling temperature of 0.1 and generate 8 sequences per
protein, from which the best performing sequence is chosen. To calculate self-consistency, we fold sequences
using OmegaFold [56] rather than ESMFold, again using default settings.

Though our models generate all-atom structure, we examine Cα RMSD rather than all-atom RMSD to avoid
misattributing sequence generation underperformance to structure generation failures. Also, since there are
usually differences in the sequences that are generated, different numbers of atoms make it difficult to assess
all-atom RMSD.

For the hold-out natural reference dataset, we use sequences from Pfam and keep length distributions similar
to that of the sampled proteins. Specifically, for each sequence bin between {64, 72, . . . , 504, 512}, we take
64 natural sequences of that length. For the experiment in Figure 16D, we use the Sinkhorn Distance rather
than the Fréchet Distance used commonly in images and video. Since not all functions have a large number
of samples, we elected to use a metric that works better in low-sample settings.

Structure novelty is obtained by searching samples against PDB100 using Foldseek [58] easy-search.
We examine the TM-score to the closest neighbor. For Foldseek and MMseqs experiments, all clustering
experiments are performed by length. We use default settings for both tools. Though we report the average
TM-Score to the top neighbor for Foldseek, we run easy-search in 3Di mode. For sequences, we use
MMseqs2 [57] to see if sequences have a homolog in UniRef50, using default sensitivity settings. For samples
with homologs, we further calculate the average sequence identity to the closest neighbor to assess novelty
(Seq ID %).

E.1 DISTRIBUTIONAL CONFORMITY TO BIOPHYSICAL ATTRIBUTES

For Wasserstein Distance to the distribution of biophysical attributes, we examine the following:

• Molecular Weight (MW): the molecular weight calculated from residue identities specified by the
sequence.

• Aromaticity: relative frequencies of phenylalanine, tryptophan, and tyrosine, from Lobry and Gautier
[67].

• Instability Index: dipeptide-based heuristic of protein half-life, from Guruprasad et al. [60].

• Isoelectricity (pI): the pH at which a molecule has no net electrical charge.
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• Hydropathy: based on the GRand AVerage of hYdropathy (GRAVY) metric, from Kyte and Doolittle
[61].

• Charge at pH = 7: the charge of a given protein at pH = 7, i.e., neutral pH.

F SAMPLING SPEEDS

We examine the amount of time necessary for generating a simple sample. We first explore the time necessary
to generate 100 sequences with L = 600. Multiflow and ProteinGenerator does not support batched generation
in its default implementation, so in this experiment, we simply generate one sample at a time for a total of
100 samples. We report the amount of time per sample. For comparison, we also run an experiment where
we only generate a single sample, such that none of the methods can make use of any improvements from
batching.

Table 4: Time required to sample proteins with 600 residues. We assess time required both for sampling
N = 100 samples in batches whenever possible, and when generating a single sequence. Experiments are
run on Nvidia A100. Methods marked by (*) do not support batching in the default implementation.

seconds/sample, batched seconds/sample, unbatched

Sample Latent Decode Sample Latent Decode

Protpardelle 11.21 - 17.16 -
Multiflow* 231.32 - 277.11 -

ProteinGenerator* 343.32 - 342.28 -
PLAID (100M) 1.64 15.12 27.63 1.07

PLAID (2B) 19.34 15.07 49.03 0.9

Table 5: Forward pass benchmark of vanilla multihead attention compared to the optimized xFormers
implementation of memory-efficient attention [49] and FlashAttention-2 [13]. Though FlashAttention2
performed best in our benchmarks, a fused kernel implementation with key padding was not yet available at
the time of writing. Since our data contained different lengths (as compared to most image diffusion use cases,
or language use-cases that can make use of the implemented causal masking), we instead use the xFormers
implementation. We expect that sampling speed results would improve once this feature is becomes available
in the FlashAttention package.

Method Mean Time (s) Mean Memory (GB)
Standard Multihead Attention 0.0946 ± 9.23e-4 76.0 ± 0.409
xFormers Memory Efficient Attention 0.0519 ± 4.33e-05 64.0 ± 0.409
Flash Attention 0.0377 ± 1.91e-3 49.2 ± 0.783

G ADDITIONAL RESULTS
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Figure 13: Additional examples of function-conditioned generations.
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Figure 14: Examining histogram of metrics for nuanced comparison of how generated samples compare to
that of natural proteins.
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Cross-Consistency RMSD (Clustered Structures)

Self-Consistency RMSD (Clustered Structures)

Sequence Perplexity Under RITA XL (Clustered Sequences)

Cross-Consistency Sequence Recovery (Clustered Sequences)

Self-Consistency Sequence Recovery (Clustered Sequences)

Figure 15: More comparison results between PLAID and baselines.
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Prompt:

 YEAST [and]


ATP-DEPENDENT PROTEIN FOLDING CHAPERONE

Figure 16: (Left) Frechet Distance between sampled protein and reference set of real protein, across sampling
(reverse diffusion) timesteps, for the DDIM [35] sampler and the DPM++2M [55] sampler. For both, sample
quality decreases steadily over time before plateauing. DPM++2M can achieve low FID results with only
10% of the original number of steps, but final results are still slightly worse. (Center) Examining the effect of
conditioning scale on the output quality. (Right) Analyzing factors which may be contributing to a greater δ
difference between the Sinkhorn distance of samples-to-real-functional-proteins vs random-proteins-to-real-
functional-proteins.
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Figure 17: Demo of motif scaffolding. We use the same motif as the RFDiffusion [1]
design_motifscaffolding.sh example for this experiment. The input motif is held constant at
the user-prescribed location. Note that PLAID generates all-atom structure, whereas RFDiffusion does not
position the sidechain atoms.
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Figure 18: To examine the degree to which co-generation methods are overfitting to structure-based metrics,
we examine properties on natural proteins.
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