

Tokenized and Continuous Embedding Compressions of Protein Sequence and Structure

October 22, 2024 Stanford AI + Biomedicine Seminar

Amy X. Lu UC Berkeley / BAIR Prescient Design / Genentech

Paper: [bit.ly/cheap-protein](http://bit.ly/cheap-proteins)s GitHub: github.com/amyxlu/cheap-proteins

3

Motivation: **Obtaining a joint embedding of structure & sequence from sequence alone**

- Existing protein representation models often capture either p(sequence) or p(structure), limiting flexibility
- Desiderata:
	- Capture the joint embedding of sequence and structure
	- Can be explicitly decoded back to structure and sequence
	- Can be captured from sequence alone

All-atom structure is a superset of sequence information!

A Member of the Roche Group

Motivation: **Sequence databases offer better data distribution coverage and function label abundance**

- Structure databases have strong priors which may not always be useful:
	- biased towards crystallizable proteins
	- sequence database sizes approaches internet-scale data, while structure databases are much smaller

Motivation: **Directly capturing the joint distribution is flexible**

Being able to characterize a joint latent space allows flexibly conditioning by and generating either modality.

Motivation: **Direct sampling from the joint distribution is natural**

Member of the Roche Group

Motivation: **Large pretrained models capture useful priors for decision making**

● Multimodal pretrained models offer useful priors ○ e.g. VLMs in robotics

 \rightarrow can we use information captured by AlphaFold2, etc. as a "foundation model" for decision making in protein engineering?

[RT-2: Vision-Language-Action Models Transfer Web Knowledge](https://robotics-transformer2.github.io/) to [Robotic Control](https://robotics-transformer2.github.io/)

How can we repurpose the joint representation of p(sequence, structure) in protein folding models for downstream tasks?

Refresher: ESMFold for sequence-to-structure prediction

AlphaFold2: Uses an explicit retrieval step

 \bullet

Refresher: ESMFold for sequence-to-structure prediction

Observation: at inference time, the pairwise input is initialized as zeros…

Observation: at inference time, the pairwise input is initialized as zeros…

 \rightarrow LM embedding captures sufficient inductive biases for structure, but requires **only sequence data** during training!

Observation: at inference time, the pairwise input is initialized as zeros…

 \rightarrow LM embedding captures sufficient inductive biases for structure, but requires **only sequence data** during training!

Consider this latent space as a **joint representation of protein sequence and structure that can be obtained from sequence only.**

an early attempt at diffusing in this latent space…

We are able to learn structural folds. despite using only sequence inputs!

Empirically considering this latent space as a joint distribution is a go \vee

PLAID v0.5: Generating Protein Sequence and Structure Without Structural Training Data Amy X. Lu, Kevin K. Yang, Pieter Abbeel

ICML 2024 Workshop on Machine Learning for Life and Material Sciences

an early attempt at diffusing in this latent space…

PLAID v0.5: Generating Protein Sequence and Structure Without Structural Training Data Amy X. Lu, Kevin K. Yang, Pieter Abbeel

ICML 2024 Workshop on Machine Learning for Life and Material Sciences

Latent space requires regularization

In order to avoid arbitrarily high-variance latent spaces, we experiment with two different kinds of regularizations. The first variant, KL-reg., imposes a slight KL-penalty towards a standard normal on the learned latent, similar to a VAE $[46, 69]$, whereas *VQ-reg.* uses a vector quantization layer [96] within the decoder. This model can be interpreted as a VQGAN $[23]$ but with the quantization layer absorbed by the decoder.

[High-Resolution Image Synthesis with Latent Diffusion Models](https://arxiv.org/pdf/2112.10752)

- Latent space requires regularization
- Training data only allows for length of 128 due to memory constraints
	- Some samples show the curvatures of a beta barrel, but sequence length limits seeing a full beta barrel

Genentecl A Member of the Roche Group

- Latent space requires regularization
- Training data only allows for length of 128 due to memory constraints
	- Some samples show the curvatures of a beta barrel, but sequence length limits seeing a full beta barrel
		- Need to shorten the protein?
- pLDDT is not designed to assess generation from evolutionary scale datasets
	- Biased towards generative models trained on the same data as AF2, i.e. PDB

l ieneni A Member of the Roche Group

- Latent space requires regularization
- Training data only allows for length of 128 due to memory constraints
	- Some samples show the curvatures of a beta barrel, but sequence length limits seeing a full beta barrel
		- Need to shorten the protein?
- pLDDT is not designed to assess generation from evolutionary scale datasets
	- Biased towards generative models trained on the same data as AF2, i.e. PDB
- Large latent space corresponds to high-resolution image generation
	- \circ in LDMs, latent space is 64 x 4 x 4, as opposed to ours, which is 512 x 1024

G. NCSN++ (Song et al., 2021) FFHQ-1024² Reference Samples

Diffusion models in their naive formulation often fail for 1024 x 1024 resolution generation.

A closer look at the latent space of ESMFold…

…ESMFold latent space exhibits pathologically large values

- Some channels exhibit very high mean values, regardless of the input.
	- Implications for generation: data distribution is no longer Gaussian distributed

…ESMFold latent space exhibits pathologically large values

Not just an issue for this particular layer...

ESMFold ESM2 latent space exhibits pathologically large values

Visualizing the top 3 highest values in intermediate ESM2 layers, against the median value.

Massive activations begin in early layers, and accumulate throughout the model.

ESMFold Large transformer model latent spaces exhibits pathologically large values

A pervasive issue across large transformer models!

[Submitted on 27 Feb 2024 (v1), last revised 14 Aug 2024 (this version, v2)]

Massive Activations in Large Language Models

Mingjie Sun, Xinlei Chen, J. Zico Kolter, Zhuang Liu

We observe an empirical phenomenon in Large Language Models (LLMs) -- very few activations exhibit significantly larger values than others (e.g., 100,000 times larger). We call them massive activations. First, we demonstrate the widespread existence of

ESMFold Large transformer model latent spaces exhibits pathologically large values

A pervasive issue across large transformer models!

[Submitted on 27 Feb 2024 (v1), last revised 14 Aug 2024 (this version, v2)]

Massive Activations in Large Language Models

Mingjie Sun, Xinlei Chen, J. Zico Kolter, Zhuang Liu

We observe an empirical phenomenon in Large Language Models (LLMs) -- very few activations exhibit significantly larger values than others (e.g., 100,000 times larger). We call them massive activations. First, we demonstrate the widespread existence of

Figure 5: Attention patterns *before* and *after* massive activations appear in LLaMA2-7B. For each layer, we visualize average attention logits (unnormalized scores before softmax) over all heads, for an input sequence.

What if we just remove these wacky channels?

What if we just remove these wacky channels?

 $\mathbf 0$

What if we just remove these wacky channels?

Why should we care about these massive activations?

- Training stability
- Model compression and 8-bit quantization
- Model interpretability
- …

Zeming I in

This is why we could never get bf16 / fp16 training working, I tried a bunch of things but could never stop these large activations from popping up in the training dynamics. Thanks for investigating it.

LLM.int8(): 8-bit Matrix Multiplication for Transformers at Scale

If removing 3 channels can remove performance, is the information evenly distributed through all the channels?

If not, can we **compress these channels?**

Why compress?

- More portable representation
- Better understanding of protein folding internals
- Compressed data distributions are easier to learn during generative modeling

An autoencoder for protein embedding compression

An autoencoder for protein embedding compression

Obtaining CHEAP embeddings

- Discretize embeddings using FSQ
	- 'snaps' continuous encoder values to discrete bins

- Take the output of the downprojecting autoencoder
	- apply tanh to bound values between [-1, 1], to bound values during diffusion

Side note: why tokenized representations?

Tokenized representations can be helpful for our downstream aims of generation and search:

All-atom structural tokenizer, obtained from sequence alone

Genentech A Member of the Roche Group **..yes, we** *can* **compress the embeddings:**

We can compress up to 8x, and sacrifice very little performance.

..yes, we *can* **compress the embeddings:**

Sequence information is easier to retain than structure.

..yes, we *can* **compress the embeddings:**

We can compress lengthwise and channelwise:

What does this mean for how structural information is shared across residue positions?

What about function information?

Performance degradation with compression is much more gradual. What does this imply about the information content captured in pLMs with respect to downstream tasks?

Does the autoencoding scheme "fix" the irregular latent space?

Despite linearly interpolating in the latent space, the decoded sequence and structure changes very abruptly.

Does the autoencoding scheme "fix" the irregular latent space?

sequence space structure space

- Despite linearly interpolating in the latent space, the decoded sequence and structure changes very abruptly.
- After CHEAP regularization, the change is more gradual

Genentech A Member of the Roche Group

PLM latent manifolds might be less "rugged" than true protein fitness landscapes

What makes for a good latent space?

Should we want more of the latent space to map back to a "valid protein" for sampling purposes, or properly model the rugged protein landscape?

Do current PLM embeddings actually recapitulate protein fitness landscapes?

"Disrupting" and reconstructing in the token space

Genentech A Member of the Roche Group

Genentech A Member of the Roche Group

PLAID (Protein LAtent Induced Diffusion)

ongoing work!

tl;dr – now that we have a regularized & compressed embedding of p(sequence, structure), can we train a latent diffusion model for co-generation?

PLAID, again

- Learn diffusion model in regularized and compressed latent space
	- mirrors the regularized autoencoder in LDM
- Can learn on longer sequences due to CHEAP shortening
- Use DiT instead of U-triangular self attention
	- \circ allows for scaling up to higher parameter counts
- Scale up to 2B parameters with BS=2048

PLAID, again

Comparing noise schedules in original and compressed latent space:

Noising in the CHEAP compressed space maps to noise in the sequence and structure space that is is closer to the true signal-to-noise ratio.

Samples demonstrate sequence and structural conservation

prompt: **"yeast" AND "6-phosphofructokinase activity"**

Search against the **structure database (PDB100)** to see if our samples are sensible…

- closest match: 3o8o [**Structure of phosphofructokinase]**
- organism: **Saccharomyces cerevisiae** (i.e. yeast)
- Sequence identity: 47.9%

Search against the **sequence database (UniRef90)** to see if our samples are sensible…

- closest match: PFK1 **[6-phosphofructokinase, alpha subunit]**
- organism: **Hypocenomyce scalaris** (also in the fungus kingdom)
- sequence identity: 50.67%

Examining active site conservation

prompt: **"human" AND "protein kinase activity"**

Closest Foldseek neighbor: **6cd6 (human calcium/calmodulin-dependent protein kinase kinase 1)**

Takeaways

- The latent space of ESMFold is disorganized with massive activations
- Compressing the latent space shows that *many* channels might be extraneous for structure prediction
- Information content relating to sequence, structure, and function is not symmetrical
- CHEAP regularization helps with latent diffusion model training, leading to **an all-atom co-generation model with sequence database scale coverage**

Genentec A Member of the Roche Group

Thanks!

Berkeley Amy X. Lu Wilson Yan Pieter Abbeel

Microsoft Research

Kevin Yang

Prescient Design

Sai Pooja Mahajan Sarah Robinson Vladimir Gligorijevic Kyunghyun Cho Richard Bonneau Nathan C. Frey

Paper: bit.ly/cheap-proteins

Code & weights: github.com/amyxlu/cheap-proteins

@amyxlu $\frac{w}{w}$ amyxlu.github.io \blacktriangleright amyxlu@berkeley.edu

prompt: **"mouse" AND "6-phosphofructokinase activity"**

G

4xz2

human

e-value=48.2

Select target residues to highlight their structure. CLEAR SELECTION @ Click on highlighted sequences to dehighlight the corresponding chain

→ 4xz2-assembly1_C

Q 2 LAVMQVGAPSAGINAAVRSAVRTGINNGYEVLFIQDGFQGLLKGESHLHEVHWNSIA +AV++VGAP+AG+NAAVRSAVR GI +G+ +L I DGF G+ KG ++ E+ W ++ T 363 VAVINVGAPAAGMNAAVRSAVRVGIADGHRMLAIYDGFDGFAKG--OIKEIGWTDVG Q 62 QTGGSDLHTARGRAMTEEQGLAEAAKALEDHGINGLMVIGGFDNLSGVNMLRQARSK GGS L T R + L E A + H IN+L++IGGF+ G+ L AR K T 421 GQGGSILGTKRVLPG---KYLEEIATQMRTHSINALLIIGGFEAYLGLLELSAAREK Q 122 LTNQIPLVAVPCTINNDVPGTDMTLGTDSACNAIAEIVDRIKLSASATKSRVFVIET + +P+V VP T++N+VPG+D+++G D+A N I + DRIK SAS+TK RVF+IET T 478 FC--VPMVMVPATVSNNVPGSDFSIGADTALNTITDTCDRIKQSASGTKRRVFIIET Q 182 FCGYLATCAGIACGADACYVMEEEGKISVKNVPIQFEIMVTHLRRGMHRGLILHLER $+CGYLA$ +G+A GADA Y++EE ++++ + E + ++ ++RGI +1 E T 536 YCGYLANMGGLAAGADAAYIFEEP -- FDIRDLOSNVEHLTEKMKTTIORGLVLRNES Q 242 QYTTQFINKLFSEEGKGVFDIRINVLGYMQQGGSPTPHDRNFGARCGMKCLLWL

+YTT FI +L+SEEGKGVFD R NVLG+MQQGG+P+P DRNFG + + + W+ T 594 NYTTDFIYQLYSEEGKGVFDCRKNVLGHMQQGGAPSPFDRNFGTKISARAMEWI

Select target residues to highlight their structure. CLEAR SELECTION @ Click on highlighted sequences to dehighlight the corresponding chain

→ 3o8n-assembly1_A

0 2 LAVMOVGAPSAGINAAVRSAVRTGINNGYEVLFIODGFOGLLKGESHLHEVHWNSIA +AVM+VGAP+AG+NAAVRS VR G+ +G VL ++DGF+G KG ++ E W+ ++ T 395 VAVMNVGAPAAGMNAAVRSTVRIGLIOGNRVLVVHDGFEGPAKG--OIEEAGWSYVG 0 62 OTGGSDLHTARGRAMTEEOGLAEAAKALEDHGINGLMVIGGFDNLSGVNMLROARSK GGS L + R + + + + + + + T+GL++IGGF+ +G L ++R + T 453 GOGGSKLGSKRT--LPK-KSFEQISANITKFNIQGLVIIGGFEAYTGGLELMEGRKC 0 122 LTNOIPLVAVPCTINNDVPGTDMTLGTDSACNAIAEIVDRIKLSASATKSRVFVIET L IP+V +P T++N+VPG+D+++G D+A N I DRIK SA++TK RVF+IET T 510 LC--IPFVVIPATVSNNVPGSDFSVGADTALNTICTTCDRIKQSAAGTKRRVFIIET Q 182 FCGYLATCAGIACGADACYVMEEEGKISVKNVPIOFEIMVTHLRRGMHRGLILHLER +CGYLAT AG+A GADA Y++EE +++++ + E +V ++ + RGL+L E+ T 568 YCGYLATMAGLAAGADAAYIFEEP--FTIRDLOANVEHLVOKMKTTVKRGLVLRNEK Q 242 QYTTQFINKLFSEEGKGVFDIRINVLGYMQQGGSPTPHDRNFGARCGMKCLLWL +YTT FI L+SEEGKG+FD R NVLG+MOOGGSPTP DRNF+ + G K + W+ T 626 NYTTDFIFNLYSEEGKGIFDSRKNVLGHMOOGGSPTPFDRNFATKMGAKAMNWM

TM-Score: 0.93557

RMSD: 1.78

 \therefore \Leftrightarrow \odot \otimes

TM-Score: 0.92514 RMSD: 1.93

3o8n rabbit e-value=46.5

● species conditioning is biased database composition

e.g. performance on "HUMAN" and "ECOLI" is better, since they are better represented in the database

Why GO terms and organism?

- generative protein design should propose designs that might be useful. What are some possible use cases?
	- being able to express in model organisms
	- humanization efforts
	- enzyme engineering

Organism: encourages generating samples that might express. GO term: gives us finer control over monomer generation

