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Motivation: Obtaining a joint embedding of structure & sequence

from sequence alone
)

e Existing protein representation models
often capture either p(sequence) or
p(structure), limiting flexibility e

e Desiderata: Sequence Structure

o Capture the joint embedding of
sequence and structure

o Can be explicitly decoded back to \_ VAN )
structure and sequence

All-
o Can be captured from sequence alone \\ atom structure J

All-atom structure is a superset of
sequence information!
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Motivation: Sequence databases offer better data distribution
coverage and function label abundance

e Structure databases have
strong priors which may not
always be useful:

o biased towards
crystallizable proteins

o sequence database sizes UniRef90: 193 million
approaches internet-scale
data, while structure
databases are much
smaller

Pfa illion

PDB: 214K
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Motivation: Directly capturing the joint distribution is flexible

Conditioning

Structure

Generation

AN

Sequence

Multimodal
latent space

Structure

Being able to characterize a joint latent space allows flexibly

Sequence

conditioning by and generating either modality.
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Motivation: Direct sampling from the joint distribution is natural

Structure generation +

inverse folding L
- p(branches)_\ Lo p(apples)_\

Generate a picture of tree P Generate a picture of apples
branches. Do in midair.
[ Y /ﬁ‘ 5 P

Sequence generation + folding Co-generation

p(apples, branches)~

-~
Generate a picture of an
apple tree.

o EN A5 S
Here s the image oftree branches you requested. If you need any modifications or
additionaldetails, feel free to ask!

- J P
- p(apples|branches)~ 1  (~

Add apples to this tree § ; [ Add branches to these apples. ]
branch. Dol

Here i the image of apples suspended in midair | hope it captures the surreal effect you were
looking for!

- J

p(branches|apples) ~

Here is the image of an apple tree you requested! Let me know if

you need any adjustments or further assistance.

S byt i . . Here is the updated image wiith branches holding the apples in place. The branche

- . touch while maintaining the surreal effect. | hope this mests your expectations!
Here's the updated image with apples added to the tree branches. If you need any further

\_ adjustments, just let me know! ) _ J
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Motivation: Large pretrained models capture useful priors for

decision making

e Multimodal pretrained
models offer useful priors
o e.g.VLMs in robotics

- can we use information
captured by AlphaFold?2, etc.
as a “foundation model” for
decision making in protein
engineering?

e p
Q: What should RT-2 (Large language model
the robot do to
<task>? A: ... (e ) e e} ans Y e Y an)
| o g !
OOOoOCOomd

.
o=
RANESh

[ A: = 132 114 128 5 25 156 ]—)[ 2 ;

De-tokenize

ViT

[0.1, -0.2, 0]
[10°, 25°, -7°]

Robot action

RT-2: Vision-Language-Action Models Transfer Web Knowledge to

Robotic Control
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https://robotics-transformer2.github.io/
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How can we repurpose the joint
representation of p(sequence, structure) in
protein folding models for downstream
tasks?
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Refresher: ESMFold for sequence-to-structure prediction

AlphaFold2:

Uses an explicit
retrieval step

'ﬁ"_fj_t_<

Input sequence

harness additional

Templates

sequence-based priors

Evoformer
(48 blocks)

£
*%7\

-

TitAY
Pair
representation
o)

|

—>

Structure
module
(8 blocks)

High
confidence

e

3D structure

|

<« Recycling (three times)

}

learn structural features
from sequence latents

generate structures
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Refresher: ESMFold for sequence-to-structure prediction

© > (Grrrtit
f Thrt
—»| Gerelc p | Qpripot
ey RBTITE
MSA
GreTets

Input sequence

Templates

Evoformer
(48 blocks)

R

P o 28 ) High
ll - confidence
— 15
(. = f
Structure

module ’r
(8 blocks) _’r@ ?
. I I I 1 b L ‘ -~

Pair |

:

3D structure

l

<« Recycling (three times)

00 ESMFold:

Replaces retrieval
step with a language

model

Pretrained via Masked LM

oooooooo

Oooooooog

Single Sequence

harness additional
sequence-based priors

751”

Pair Rep

Self
attention

product /
difference,

Transition

Pairwise

Recycling |

Structure
Module Predicted
structure and

Transition

e confidence 4

J

learn structural features

Folding Block

generate structures

from sequence latents
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185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
“ee 208
209
210
211
212
213
214

¥ main ~

| Code | Blame 364 lines (305 loc)

esm / esm [ esmfold / v1 | esmfold.py

- 13.6 KB Raw (0 & 2

def forward(

# === ESM ===
esmaa = self._af2_idx_to_esm_idx(aa, mask)

if masking_pattern is not None:
esmaa = self._mask_inputs_to_esm(esmaa, masking_pattern)

esm_s, esm_z = self._compute_language_model_representations(esmaa)

# Convert esm_s to the precision used by the trunk and

# the structure module. These tensors may be a lower precision if, for example,
# we're running the language model in fpl6 precision.

esm_s = esm_s.to(self.esm_s_combine.dtype)

esm_s = esm_s.detach()

=== preprocessing ===
esm_s = (self.esm_s_combine.softmax(@).unsqueeze(@) @ esm_s).squeeze(2)

s_s_0 = self.esm_s_mlp(esm_s)

if self.cfg.use_esm_attn_map:
esm_z = esm_z.to(self.esm_s_combine.dtype)
esm_z = esm_z.detach()
s_z_0 = self.esm_z_mlp(esm_z)

else:
s_z_ 0

s_s_@.new_zeros(B, L, L, self.cfg.trunk.pairwise_state_dim)

s_s_0 += self.embedding(aal)

structure: dict = self.trunk(
s_s_@, s_z_0, aa, residx, mask, no_recycles=num_recycles

T Top
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-~ Observation: at inference
- —time, the pairwise input is
initialized as zeros...
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Observation: at
inference time, the
pairwise input is
initialized as zeros...

> LM embedding
captures sufficient
inductive biases for

structure, but requires

only sequence data
during training!

harness additional
sequence-based priors

Pretrained via Masked LM

0000000 -

1L Triangular| (o
diff 5 Update

Recycling I

e,
< 7 N
Structure XN
Module Predicted U
structure and

Self
attention

J

&ingle Sequence

Folding Block

learn structural features
from sequence latents

confidence
8 blocks ! ¢

generate structures

13
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Observation: at
inference time, the
pairwise input is
initialized as zeros...

> LM embedding
captures sufficient
inductive biases for
structure, but requires
only sequence data
during training!

Consider this latent space as a
joint representation of protein
sequence and structure that can
be obtained from sequence only.

___________________________________________

o
0
N—
=
o
B
=
- .
I y
cl| = ¢
= p(sequence, structure)
% .
I
"

p(sequence)

___________________________________________
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an early attempt at diffusing in this latent space...

We are able to learn structural folds,
despite using only sequence inputs!

Empirically considering this latent space
as a joint distribution is a go

pLDDT =0 pLDDT = 100

PLAID v0.5: Generating Protein Sequence and Structure Without Structural Training Data
Amy X. Lu, Kevin K. Yang, Pieter Abbeel

ICML 2024 Workshop on Machine Learning for Life and Material Sciences Genentech
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an early attempt at diffusing in this latent space...

E=m Natural Proteins pLDD:I- IS falrly |lOW.

| == pLaD What’s preventing the

ProteinGenerator .
model from learning?

{ ol " l

.m H[II III\IM e IH

A

pLDDT =0 pLDDT = 100 100
pLDDT of Generated Structure
PLAID v0.5: Generating Protein Sequence and Structure Without Structural Training Data
Amy X. Lu, Kevin K. Yang, Pieter Abbeel

ICML 2024 Workshop on Machine Learning for Life and Material Sciences Genentech
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Issues and hypotheses -> CHEAP

e Latent space requires regularization

In order to avoid arbitrarily high-variance latent spaces,
we experiment with two different kinds of regularizations.
The first variant, KL-reg., imposes a slight KL-penalty to-
wards a standard normal on the learned latent, similar to a
VAE [0, 09], whereas VQ-reg. uses a vector quantization
layer [©0] within the decoder. This model can be interpreted
as a VQGAN [”7] but with the quantization layer absorbed
by the decoder.

High-Resolution Image Synthesis with Latent Diffusion Models

Genentech
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https://arxiv.org/pdf/2112.10752
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Issues and hypotheses -> CHEAP

e Latent space requires regularization
e Training data only allows for length of 128
due to memory constraints
o Some samples show the curvatures of a
beta barrel, but sequence length limits
seeing a full beta barrel

pLDDT = 100

Genentech



Issues and hypotheses -> CHEAP

Latent space requires regularization
Training data only allows for length of 128
due to memory constraints
o Some samples show the curvatures of a
beta barrel, but sequence length limits
seeing a full beta barrel
m Need to shorten the protein?
pLDDT is not designed to assess generation
from evolutionary scale datasets
o Biased towards generative models trained
on the same data as AF2, i.e. PDB

19

[ Natural Proteins
| | PLAID
"1 ProteinGenerator

40 60 80 100

pLDDT of Generated Structure
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Issues and hypotheses -> CHEAP

Latent space requires regularization
Training data only allows for length of 128
due to memory constraints
o Some samples show the curvatures of a
beta barrel, but sequence length limits
seeing a full beta barrel
m Need to shorten the protein?
pLDDT is not designed to assess generation
from evolutionary scale datasets
o Biased towards generative models trained
on the same data as AF2, i.e. PDB
Large latent space corresponds to
high-resolution image generation
o in LDMs, latent space is 64 x 4 x 4, as
opposed to ours, which is 512 x 1024

20

G. NCSN++ (Song et al., 2021) FFHQ-1024> Reference Samples

Diffusion models in their naive formulation often fail
for 1024 x 1024 resolution generation.

Genentech
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A closer look at the latent space of ESMFold...

esm s Magnitude

/

1000

500

Channel
dimension
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..ESMFold latent space exhibits pathologically large values

esm_s

Magnitude

/

500

Channel
dimension

1000 .

Some channels exhibit very high mean
values, regardless of the input.
o Implications for generation: data
distribution is no longer Gaussian
distributed

Genentech
A Member of the Roche Group



23

..ESMFold latent space exhibits pathologically large values

esm_s s_post_softmax s_post_mlp

Not just an issue for this particular layer...
Genentech
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ESMFeld ESM2 latent space exhibits pathologically large values

Visualizing the top 3 highest
values in intermediate ESM2
layers, against the median
value.

Massive activations begin in
early layers, and accumulate
throughout the model.

3000+ Top 3 largest
activation
values per layer
O
©2000-
=
=
&
< 1000-
01 . . - . Median
1 9 18 27 activation
Layers value

ESM2 layers

Genentec
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ESMFeld Large transformer model latent spaces exhibits

pathologically large values

A pervasive issue across large transformer models!

[Submitted on 27 Feb 2024 (v1), last revised 14 Aug 2024 (this version, v2)]
Massive Activations in Large Language Models
Mingjie Sun, Xinlei Chen, J. Zico Kolter, Zhuang Liu

We observe an empirical phenomenon in Large Language Models (LLMs) -- very few
activations exhibit significantly larger values than others (e.g., 100,000 times larger).
We call them massive activations. First, we demonstrate the widespread existence of

Genentech

A Member of the Roche Group
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ESMFeld Large transformer model latent spaces exhibits
pathologically large values S o737 e R e T e

Massive Activations in Large Language Models

Mingjie Sun, Xinlei Chen, J. Zico Kolter, Zhuang Liu

A pervasive issue across large transformer models!

We observe an empirical phenomenon in Large Language Models (LLMs) -- very few
activations exhibit significantly larger values than others (e.g., 100,000 times larger).
We call them massive activations. First, we demonstrate the widespread existence of

LLaMA2-7B, Layer 2 LLaMA2-7B, Layer 2 LLaMA2-7B, Layer 3 LLaMA2-7B, Layer 31
2
H‘ﬁrh massive activations }o massive activations
1 N .
= r > > -2
] || g -4 3
¢] (¢} a
-0 -4
I i -6 | 1
: '6
=1 -8
111 . | .
Key Key Key

Figure 5: Attention patterns before and after massive activations appear in LLaMA2-7B. For each layer, we
visualize average attention logits (unnormalized scores before softmax) over all heads, for an input sequence.
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What if we just remove these wacky channels?

0 100
Activations

2000

107! 10
Activations (log-scal€

10°

-10 0
Activations

10

-10 0 10

Activations

27
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What if we just remove these wacky channels?

a%z 1.0 f
5 0.9
30 >
e % 0.8
— 0.7
g£20 £ 0.6
(0] @ o3 * o Il All channels
O 15 8 0.5 [ Outliers Removed
10 S 04
5 go3
S 0.2
o Lo 1 1 .
0 100 2000 107 10 10° 2 w
Activations Activations (log-scale b F 01
. 0.0
100
6 90
o o o §4 — B0
O a 70
5
, 2 60
_S 50
-t
0 240
=10 0 10 -10 0 10 °
Activations Activations § 30
20
10 I All channels
[ Outliers Removed
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What if we just remove these wacky channels?

v 1.0 -?-

£ 09

* 208

25 % 0.7

§20 E 0'6 channels
° T ° 815 * 2 ac ; gILIJtIihers Relmoved
10
5
0 o0 ° Despite there being 1024 channels in the —_—
Activations . ' .
| embedding, simply removing 3 channels causes
prediction ability to entirely deteriorate.

6
o o O §4

“ N A

2 0 % 60

~10 0 10 0 _’1‘;, 8 0 2 40

Activations Activations g_'_’ 30

20

I All channels
10 [ Outliers Removed
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Why should we care about these massive activations?

\-) Zeming Lin
1 H HB This is why we could never get bf16 / fp16 training working, | tried a
Tral n I n g Sta b I | Ity bunch of things but could never stop these large activations from
MOdel Com preSSiOn and 8_bit q uantization popping up in the training dynamics. Thanks for investigating it.

LLM. int8(): 8-bit Matrix Multiplication
for Transformers at Scale

Model interpretability

If removing 3 channels can remove performance, is the information evenly
distributed through all the channels?

If not, can we compress these channels?

Genentech

Member of the Roche Group



Why compress?

e More portable representation

e Better understanding of protein
folding internals

e Compressed data distributions are
easier to learn during generative
modeling

31
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An autoencoder for protein embedding compression

-

| y ﬂ |
ESMFold} 4 l Ny / |
folding E . ‘ i
trunk ! -| :
o - | :

y = ! : |

i : | |

! | : i
Projectioni b=l I : i |
.l i i Length & |
551142 E chL::ng;Rv?se E § RGBS 5
' Gaath i ' up-projection . i !

E Normalization  down-projection ! 0 Quantization | P-proj Un-normalize |

A— Hourglass Encoder ------ ; S Hourglass Decoder ------- ‘

Genentech
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An autoencoder for protein e

_______________

mbedding compression

ESMFold
folding
trunk

a simple fix for massive activations:
post-hoc channel norm

X — Xmi
X’ —— X ((Cma.x - Cmin) == Cmin)
Xmax — Xmin
Projection R < = :
layers i 1 ’ i Len
: ! gth &
| chL:r?ng;Ir\]NsiLse ; | channelwise
ESM2 E o ' up-projection  Un-normalize
' ©Quantization |

-------- Hourglass Decoder -------

Genentech
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Obtaining CHEAP embeddings

————— 7
. Wy )
1. Tokenized O/ | @tant
————— '
,” I ‘s\
d 38
e Discretize embeddings o~
using FSQ Y | £
o ‘snaps’ continuous il il
encoder values to 4,
I
I
I

discrete bins |'
|
I

© Quantization

34

2. Continuous

Take the output of the
downprojecting autoencoder
o apply tanh to bound
values between [-1, 1],
to bound values during
diffusion

Genentech
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Side note: why tokenized representations?

Tokenized representations can be helpful for our downstream aims of generation and search:

Sequential

Decoding

with Autoregressive >
g - - -~

Transformers

t=0 t=1 t=120 t=200 t=255

Scheduled
Parallel
Decoding
with MaskGIT

MaskGIT: Masked Generative Image Transformer

(4) (Discretization) conversion to 3Di sequence

Amino acid --Val--

3Di sequence -

jcos ¢|.Z

Icos ¢y 5

Icos ¢|“

cos @y 5

cos ¢ 3

oS P34

COs P35

d

fi(i-j)

fa(i=j)

cos ¢y
Cos @y 3
o Stale1
cos P4 / 72
cos $1s | State2 \
cos ¢, 5 *e bs
cos @3 4 Encoder ‘ D State3 Decoder
. 28 2P
cos ¢35
d Y o State21
(i) ey XA
foli=j)
(3) Search 3Di state library (4) (Training) predict
features
Foldseek

35
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https://arxiv.org/pdf/2202.04200
https://www.nature.com/articles/s41587-023-01773-0/figures/1

All-atom structural tokenizer, obtained from sequence alone

TM-Score

Accuracy

Template Modeling Score
1.04

0.8}
|
06!
1
0.4'
il —e— FSQ
1 z
0.2, ‘ VQ-VAE
24 26 28 210 212 214 216
Codebook Size
Sequence Accuracy
A
0.8y
|
0.6! w
1 I ) 0
1 =
0.4|
0.21 VQ-VAE
1

24 26 28 210 212 214 216
Codebook Size

Root-Mean-Square Deviation

1
30, —— FSQ
1 VQ-VAE
< 20!
a |
a1
= 10}
|
24 26 28 210 212 214 216
Codebook Size
Loss
0.035
1 —o— FSQ
I VQ-VAE
0.030,
1
1
0.025
1
1
0.020

24 26 28 210 212 214 216
Codebook Size

Local Distance Difference Test

IDDT Score

VQ-VAE

|24 26 28 210 12 214 716
Codebook Size

VQ Perplexity
VQ-VAE

N
o

o G
wn &4
D i T T

Perplexity
=

24 26 28 210 212 214 216
Codebook Size

36
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..yes, we can compress the embeddings:

Accuracy

Sequence Reconstruction

=
o

~.

o
wn

2x length shortening
== No length shortening

0.0
XV 00> 0 v X
RGN

Channel Dim.

Compression performance
with respect to sequence:

We can compress up to 8x, and sacrifice very little performance.

37
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..yes, we can compress the embeddings:

38

Sequence Reconstruction

=
o

~.

Accuracy
o
(6]

2x length shortening
== No length shortening

0.0
XV 00> 0 v X
RGN

Channel Dim.

Compression performance
with respect to sequence:

TM-Score

Structure Reconstruction

1.0 .
~.
0.5
2x length shortening
== No length shortening
0.0 2 &
"V 0 > O
,\’0"’6\"{? \:], Q" H N

Channel Dim.

Angstroms (A)

10.0 10.0
RMSD —
7.5 H— RMSPD °\<, 7.5
’ Experimental resolution (A) w0 ’
Idealized inter-residue €
5.0 bond length 8 5.0
@
2.5 i © 25
== <
0.0 e - 0.0
>V 0 >0 o
UG

Channel Dim.

Compression performance
with respect to structure:

RMSD
—e— RMSPD
Experimental resolution (A)
Idealized inter-residue i
bond length /
/.
./'\._——c——'"
™
\/&v%\g, PR e @

Channel Dim.

Sequence information is easier to retain than structure.
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..yes, we can compress the embeddings:

Dim.

TMScore 0.789

Genentech
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We can compress lengthwise and channelwise:

w

What does this mean for how structural information is

Mean seq. acc.

Mean LDDT

Mean seq. acc.

1.00 @ ® ®

0.75

0.50

0.25 =@= No channel downprojection
=®= 32x channel downprojection

0.00 20 21 22 23

Shorten Factor
Mean LDDT

1.00 f ———— ——— ®

0.75

0.50

0.25 =@= No channel downprojection
=®= 32x channel downprojection

0.00 20 = 22 =

Shorten Factor

Mean TMScore

Mean TMScore
100 ————3
0.75
0.50
0.25 =@= No channel downprojection
=@ 32x channel downprojection
0.00 20 51 2 23
Shorten Factor
Mean RMSD
4 Experimental resolution (A)
o) Idealized inter-residue
0 3 bond length
=
o
c 2 ®: L o
8 o/
=1
29 2! 2% 23

Shorten Factor

shared across residue positions?

40
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What about function information?

Solubility
1.0
g */*‘—‘*‘—*‘—*_*—*_*
5 0.5
o
<
0'0 T T T T
23 25 27 29
# Channel Dimensions
Fluorescence
1.0
Q
w
=
©
£ 0.5 ro
o K
0.0 T T T T

# Channel Dimensions

Accuracy

Accuracy

Binary Localization

1.0 e
P
*/
0.5 4
0-0 T T T T
23 25 27 20
# Channel Dimensions
Subcellular Localization
t/t/*’*‘_* .
0.5 /,/*"
*
0.0 T

3 23 21 2
# Channel Dimensions

Spearman's p

Spearman's p

Stabilit
1.0 y
riulelalairiet =
0.5 - */*/
0.0 T T T T
23 25 27 2°
# Channel Dimensions
B-lactamase
1.0
0.5 -
*.——*
*’*/*/*—*
0.0 T T T

23 i5 27 2°
# Channel Dimensions

Performance degradation with compression is much more gradual.
What does this imply about the information content captured in pLMs
with respect to downstream tasks?

41
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Does the autoencoding scheme “fix” the irregular latent space?

Original

|
°

Sequence Recovery
o
s

o
N

o
o

o
o

Smoothness of Latent Interpolations

Yo
[
/

o
@

1.0

4
©

TMScore
o
S

o
N

o
o

0 20 40 60 80 100
Interpolation Step

sequence space

o
=)

0 20 40 60 80 100
Interpolation Step

structure space

Despite linearly interpolating in the
latent space, the decoded sequence
and structure changes very abruptly.
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Does the autoencoding scheme “fix” the irregular latent space?

Smoothness of Latent Interpolations

, | e Despite linearly interpolating in the

£ T
orignal 3¢ / latent space, the decoded sequence
L™ J g [— and structure changes very abruptly.
e o i e After CHEAP regularization, the
=1 I = change is more gradual
:;T’o,s' / s |
N & o6 / § o ' i
. ,?,]rpmre; . % el /// g N /JJ Original Latent Space
(512 x 8) g / ol AN W?
2.9 0 20 /40//60 80 100 L o 20 40 60 80 100 /%/{
Interpolation Step Interpolation Step Q{; }‘ )
sequence space structure space \%
"%\;%

AR *Z‘* f 1jzdC00
Compressed Latent Space

t=0 1=0.25 t=0.5 t=0.75 t=1
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PLM latent manifolds might be less “rugged” than true

protein fitness landscapes

Naturalness of Latent Interpolations

1001
801
601
a0
20
0

Smoothness of Latent Interpolations

o
$os / 08 | 20
g [ ® 2z
o 06/ | So6 | i ‘
Original ¢ £ | s
$oal Eoa $1o
g ) —
o2 / 02 5

% @ w0 %% 20 40 e s 100

pLODT

50 20 40 60 8 100 20 40 60 80
Interpolation Step Interpolation Step Interpolation Step Interpolation Step
107 —
10| — ~— 100]
g I 08 | 20
Zos / | -
Norm + g Los | 215
i J g 3 8 60
Compress ¢ 7 2 os f e ]
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What makes for a good latent space?

Should we want more of the latent space
to map back to a “valid protein” for
sampling purposes, or properly model the
rugged protein landscape?

Do current PLM embeddings actually
recapitulate protein fitness landscapes?

Genentech

A Member of the Roche Group
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0.93

TMScore

-1.0

60000

50000

40000

30000

20000

10000

0

'
z
o

£

k=]

o
@

o
£
5}

Implied
codebook
quantization

0.34
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“Disrupting” and reconstructing in the token space
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Generation

d CHEAP A

(Compressed Hourglass

Issues and Embedding Adaptations of

Diagnoses Proteins)

https://www.biorxiv.org/content/10.1101/2
\ 024.08.06.606920v1 /

Search

Representation

/

Genentech
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https://www.biorxiv.org/content/10.1101/2024.08.06.606920v1
https://www.biorxiv.org/content/10.1101/2024.08.06.606920v1

a7

PLAID (Protein LAtent Induced Diffusion)

ongoing work!

t/;dr - now that we have a regularized & compressed embedding of p(sequence, structure),
can we train a latent diffusion model for co-generation?

Genentech
A Member of the Roche Group
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PLAID, again

an early attempt at diffusing in this latent space...

e Learn diffusion model in regularized
el L and compressed latent space
o mirrors the regularized
autoencoder in LDM
e Can learn on longer sequences due to
CHEAP shortening

pLDDT is fairly low. What's

PLOOT oy oprero 70<piopT<o0 PLOET e Use DiT instead of U-triangular self

| B a u attention

o allows for scaling up to higher
parameter counts

° 2 @ & o 100 e Scale up to 2B parameters with

— BS=2048

Genentech

A Member of the Roche Group

T T T T
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PLAID, again

s e e el e T
1 1! o e -
' A | Database Comparison i C | Training Diffusion loss !
1 e 1
: E : MQIFVKTLTGKTITL :
E : E EVEPSTTLEVESDT... CHEAP = i
‘ . — i Lo iT b !
E UniRef90: 193 million ¥ [GO term] - Encoder DIiT P> : :
; | E [Organism] -+ ¢ S E
! : ' : x’ x, :
| Pfa illion ;! ; X0 Xnorm  he(X) 0 Xt pg(x) :
' i | A :
: , i o ______Classifier-free guidance training ___________ i
b oo PDBE 214K . T ——
| S rem i s eedEy VD mferses
i B | ESMFold Latent Space ¢31() 1 ¢ I | Inference :
1 : : ~ 1
E Sequence sl i1 [Go term] S i
\ decoder VEPSDT o - Sequence MVIHGKTLT |
! i1 [Organism] Decoder |>GKTIDLEVE |
d i PSDTIENV.. |
1 1) 1
! / \ i :
: MQIFVKT ESMFold i CHEAP !

! |
o s ESM2 Structure H ] Decoder ESMFold :
' | TTiEVER o Head AN el Structure _>'§‘ !
1 | sprTLEV L s bt Decoder i
i | EPsDTG.. el €y N(O, I) : 5 '
1 \ / ! |
1 (I ~ H
' -1/, Lt 5 Q i
: ¢s( ) X ¢Q ( ) : : C—) Frozen weights from ESMFold (Lin et al.) X :
! i [\ Frozenweights from CHEAP (Luet al.) !
LN\ ESMFold ——— ' i
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Comparing noise schedules in original and compressed latent space:

Sequence space
(per-token similarity)

Structure space
(TM-Score to original)

SNR Log-SNR

| Original

Compressed

Noising in the CHEAP compressed space maps to noise in the
sequence and structure space that is is closer to the true

signal-to-noise ratio.

Genentec

A Member of the Roche Group
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Samples demonstrate sequence and structural conservation
prompt: “yeast” AND “6-phosphofructokinase activity”

Search against the structure database (PDB100) to Search against the sequence database (UniRef90) to see if our
see if our samples are sensible... samples are sensible...

Score Expect Method Identities Positives Gaps
327 bits(838) 3e-102 Compositional matrix adjust. 151/298(51%) 219/298(73%) 4/298(1%)

Query 2 MAIVNVGAPASGLNSAVRSLVRHCLSOGHTALAVINGFNGLCK-—NDSAMKII ECKWEQ 58
+AI++VGAPA G+NSA R+ V +CL++GHT +A+ NGF GLC+ +D + E KW
Sbjct 409 IAIIHVGAPAGGMNSATRAAVAYCLTRGHTPIAIHNGFPGLCRHHDDKPLGAVREVKWLD 468

Query 59 VNLWFAKGGSQFGTARTIFNSNDLELIFDKFEANEINGLLIIGGFNSYNALTVLRHNRQO 118
V_ W +KGGS+ GT R++ S D+E FE + +GL +IGGF ++ A+ LR
Sbjct 469 VEGWISKGGSEIGTNRSL- PSEDMEOTAKCFEOYKFDGLFVIGGFEAFTAVGELRKARKD 527

Query 119 YPEFKIPMIIIPATISNNVPGTAYSLGSESSLNALCTCVDKIKQTASASKRRVFVVETLG 178
YP F IP++I+PATISNNVPGT YS+GS++ LNAL + D IKQ+ASA++RRVFVVET G
Sbjct 528 YPAFNIPIVILPATISNNVPGTEYSIGSDTCLNALVSYCDAIKQSASATRRRVFVVETQG 587

Query 179 GTSGYIATMAGVCCGARSIYLPEQGIDLHKLDKDCDFLKQAFDKDSPYNKSGRIIIKNEA 238
G SGYIAT+AG+ GA ++Y PE+GID+ L +D + L+++F D  N++G++I++NE
Sbjct 588 GRSGYIATIAGLSIGATAVYTPEEGIDIKMLSRDIEHLRESFANDKGQNRAGKLILRNEH 647

TMScore: 0.96

RMSD: 1.4 Query 239 ASKVYSTNIIAQLIRDESNGKFDTRTSIPGHQQKGGTPTSLDRVYATKMGAKAMHFIK 296
T ASK Y+T +IA +IR+ES G+F++R ++PGH Q+GGTP+ +DRV A ++ K M
Sbjct 648 ASKTYTTELIANMIREESKGRFESRLAVPGHVQQGGTPSPMDRVRAVRLAVKCMQFIE 705
phosphofructokinase] subunit]
e organism: Saccharomyces cerevisiae e organism: Hypocenomyce scalaris (also in the fungus
(i.e. yeast) kingdom)
e Sequence identity: 47.9% e sequence identity: 50.67%

Genentech
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Examining active site conservation

—————————————— prompt: “human” AND “protein kinase activity”

““-» Closest Foldseek neighbor: 6cd6 (human calcium/calmodulin-dependent protein kinase kinase 1)

N lobe

5

DGF catalytic motif

Active site residues

Ul

Human cAMP kinase

I B sampled

“human” AND “protein
kinase activity”

TMScore: 0.858
Sequence ldentity: 29%
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Takeaways

A
. : ) . ii’ / p(structure)
e The latent space of ESMFold is disorganized with £ :
massive activations — ZL
e Compressing the latent space shows that many = =
channels might be extraneous for structure g €
. . E [l - Q B
prediction 2
e Information content relating to sequence, > b
. : . I
structure, and function is not symmetrical | =z -~ _
e CHEAP regularization helps with latent diffusion = | p(sequence, structure)
Z |

model training, leading to an all-atom
co-generation model with sequence database
scale coverage

X =

p(sequence)

Genentech

A Member of the Roche Group
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Thanks!

Berkeley Prescient Design
Amy X. Lu Sai Pooja Mahajan
Wilson Yan Sarah Robinson
Pieter Abbeel Vladimir Gligorijevic

Kyunghyun Cho
Microsoft Research Richard Bonneau
Kevin Yang Nathan C. Frey

Paper: bit.ly/cheap-proteins
Code & weights: github.com/amyxlu/cheap-proteins

@amyxlu amyxlu.github.io M amyxlu@berkeley.edu Paper GitHub


http://bit.ly/cheap-proteins
http://github.com/amyxlu/cheap-proteins

prompt: “mouse”

Select target residues to highlight their structure.
Click on to dehighlight the corresponding
chain.

CLEAR SELECTION @

= 4xz2-assembly1_C
Qe 2 R

HAVA+ +AGH RSAVR +G+ + + KG  ++ E+ ++
T 363 R R R KG--0IK

Q 62 RGR K ROARSK
o

T 421 KR ==K R REK
Q 122

F

R
T 478 FC-- RIK KRR
Q 182 KISVK RRGMHR

T 536 i R KMK R R
Q 242 K K R R

+ +L+ Ki R + + 0+ R + + + W+
T 594 K R K R
Select target residues to highlight their structure.

Click on to the corresponding
chain

CLEAR SELECTION @

- 308n-assembly1_A
Q 2

FAVM +AGH RS VR G+ + ++DGFG KG 4+ + o+t
T 395 R R R KG--
Q 62 RGR K RSK

T 453 K KRT--LPK-K K RK
Q 122 RIK KSR

T 510 LC-- 1K KRR
Q 182

T 568 o
Q 242

T 626 K
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AND “6-phosphofructokinase activity”

TM-Score: 0.93557
RMSD: 1.78

TM-Score: 0.92514
RMSD: 1.93

’ ® 9 ¢

4xz2
human
e-value=48.2

308n
rabbit
e-value=46.5

e species conditioning is biased
database composition
o e.g. performance on “HUMAN”
and “ECOLI” is better, since
they are better represented in
the database

Genentech
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Why GO terms and organism?

e generative protein design should
propose designs that might be
useful. What are some possible use

cases?
o being able to express in model
organisms
o humanization efforts G
O enzyme engineering ool !
N

Organism: encourages generating samples »«‘?/\ V‘%A\
that might express. g e ] W |

GO term: gives us finer control over
monomer generation



