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AlphaFold: Biology’s AlexNet moment?
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How can the key ingredients for AlphaFold’s success be used
in other Al for biology tasks?
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Why study AlphaFold?

top view

e As atool for forming biological
hypotheses
o Democratization of estimated structure
unlocks new opportunities in
understanding biological mechanisms
e As arepertoire of techniques
o Transferable lessons for capturing e view
inductive biases in scientific data D

o Bridges the adoption of machine Example: AlphaFold-predicted structures help us hypothesize how

|earning methods for Science Sequence'level mutations in the SARS-CoV2 Omicron variant
impacts its mechanism.

(Source: van Vuren et al., 2022)
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Background:

The Protein Folding Problem

tl;dr: Predict 3D coordinates from 1D string



What is a protein?

e Workhorse of biological functions
e Built as an assortment of 20 types of
amino acids
o Each amino acid consists of a
distinct assortment of atoms
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A. Amino Acids with Electrically Charged Side Chains
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What is a protein sequence?

e Since there are only 20
amino acids, we can give
each amino acid an letter as

an abstraction
o Allows for representation
as a string, which is more
amenable to computation
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What is a protein structure?

e Secondary structure:
Interactions between
atoms cause the series
of amino acids to form
regular substructures

e Tertiary structure:
secondary structures are
assembled into folds in
3D space

Primary structure
amino acid sequence
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hemoglobin

Tertiary structure
three-dimensional structure

beta sheet

Secondary structure
regular sub-structures

Quaternary structure
complex of protein molecules

Image source


https://www.recursion.com/news/demystifying-protein-structure-prediction-models-alphafold-rosettafold-esmfold-and-beyond

Backbone structure vs. all-atom structure

AMINO ACID 1 AMINO ACID 2

e Protein backbone atoms: (N, Ca, C)

e Side chain groups (denoted generically as R) determine the amino acid identity
o Analogy: “protrudes” from the backbone like t-shirts on this clothesline, where color of the
t-shirts defines the sequence.

e The all-atom structure include positions of the backbone and sidechain atoms.
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The protein folding problem

e Proteins seek to “fold” into a structure that
minimizes free energy

e Anfinsen's dogma: 3D structure of (most)
natural proteins is determined only by its
amino acid sequence.

e Protein folding problem: predicting 3D
structure from 1D sequence.
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The protein folding problem

e Levinthal’s paradox: searching through
possible structural configurations for a
protein should take longer than the age of the
universe, yet proteins can fold in seconds.

Determining structure from sequence alone should
theoretically be possible from our understanding of
nature, yet very difficult from our current
understanding of biophysics.
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Experimentally-resolved structure is expensive & slow

Diffracted x-rays

e Structures typically X-ray beam
experimentally resolved by Coystalline ] N
X-ray crystallography, J7 |
cryo-EM, etc. e
e C(Can take up to months and

Collimator to
. X-ray source  focus beam =
years to resolve a single o , o
X-ray diffraction Imaging surface X-ray diffraction pattern

structure

Source:
https://university.pressbooks.pub/chemistryucf/chapter/10-8-x-ray-crystallography/
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Sequence data is more abundant than structure

Cost per Raw Megabase of DNA Sequence

10,000.000
1,000.000

100.000 Moore’s Law

. National Human Genome
NIH > Research Institute

0.001
2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022

Source: https://www.genome.gov/about-genomics/fact-sheets/DNA-Sequencing-Costs-Data
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Benchmarks drive progress: the CASP competition

e (CASP: Critical Assessment of Structure

Prediction (CASP) Meliian Free-Modelling Accuracy
o Biennial competition with structural -
data for the held out set generated as _
teams prepare their predictions. 5 |
e Traditional approaches typically leverage
biophysics for predictions

CASP
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AlphaFold mechanism:
Overview

tl;dr: balancing provision of evolutionary and graph-like priors with effective end-to-end learning



Inductive biases in conventional architectures

Layer:( 8 4 - Layer: (3 & Layer: [ 10 % =
In = In
':' — : S:: :’ 2016 ————— 7 2016
e - 7 e T ’
store — - 7 store to to me' ;he
she P she the the American o American
bought -~~~ bought bus bus Statistical - _ Statistical
apples apples at at Association L Association
, , the the ( 7/ (
oranges oranges end end As =7 AS
' 5 of of A A
bananas bananan str'eheet :;reeet publishec: Lublished
Filter bank (to be learned) Featire ps ' ’ statement statement
CNNs: adopts ideas from signal processing to Transformers: attention designed to capture local structure
learn composite lower level features (grammar) and global structure (content coherence)

What are the inductive biases to capture for protein structure prediction?
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Designing an architecture for biological inductive biases
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AlphaFold mechanism:
Training Data

tl;dr: Labelled structures, unlabelled sequences, and self-distillation



The Protein Data Bank (PDB)

Total Number of Entries Available

I Number of Structures Released Annually

250000

Publicly available

dataset of

tally-resolved

experimen

150000
100000

selug Jo JequinN

protein structures.

50000

Year

>N
o
=

3,
=

<
z
o
S
=
3
=4
o
w
o
>
=
@
0o
&
=
z
=




Incorporating labelled and unlabelled data

e Consider pairs of {sequence, structure} data as {input, label}.

o As of 2024:
m # of {sequence, structure} pairs in PDB: 218,196
m # of sequence-only data in UniRef50: 63,849,054

o Relatively small labelled dataset, but a large number of unlabelled sequence data
e Aim - improve structure prediction using unlabelled sequence data:
o 1. Capture co-evolutionary patterns from sequence
o 2. Self-distillation - use labelled sequences to predict labels for unlabelled
sequences
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Coevolution

If two positions are in
~\ contact, then if one is

’ mutated, the other also
}{ loses function.

* M Thus, statistically observed

pairs of residues that

T Y Y 1 * , “‘change together” across

evolution often denotes
contact.

Image credit: Hetu Kamisetty
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Multiple sequence alignment (MSA) input

e Multiple sequence alignment:
o Statistically line up similar string Input s ves EEER R E R R
.. sequence
positions across sequences
o Used to infer evolutionary

Query for similar

relationships sequences
e |f a statistical sequence pattern is
preserved across species, it’s likely '

to imply fu nCtion Sequence A S T A A Bl R NEN NGH CHY | A BV HY L Ml R | | R g
. . . Sequence B B S T FA FAY BN 'R REN BGH ERN FAY BVA MR BRN NEN BVA FRY R BE
o Based on principles of Darwinian MSA  sequencec 118 I 11 150 0 IR0 JF0 N0 10 10 I 10 D 0 O R0 O
. Sequence D Bl S T [FAYFA| BN "R NEN EGE NHY PAY NI NHN B NI i R R)
evo | Ut I 0 n Sequence E Fl A T A ARl R PFE G| 'H A 'V BN ES 'l 'V R R [
Sequence F Bl T T A A BEN R REN EGH HHY FAY NI DR RN EA BVE ERE R EE
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A natural language analogy...

Text 1

Text 2

Text 3

Text 4

Pad Thai is stir-fry dish made with rice noodles, shrimp, chicken (or tofu), peanuts,
all sautéed together in a wok and tossed in a delicious sauce.

..a delicious Pad Thai recipe. You’ll need rice noodles, shrimp, chicken, tofu,

peanuts, scrambled eggs, red peppers, and bean sprouts.

This delicious thai dish is traditionally made up of rice noodles tossed with a deeply
flavored, sweet and sour sauce. The sauce

Our favorite vegan Pad Thai recipe involves stir-frying rice noodles, tofu, and peanut
sauce in a wok, with bean sprouts and vegetables added to taste. You’ll love..

A pad thai recipe that doesn’t include rice noodiles would likely
be removed by the editor, because it would no longer be pad thai!
Thus, rice noodles is observed to be conserved across recipes.

Berkeley

UNIVERSITY OF CALIFORNIA




Template Input

e For all sequence homologs found during

MSA construction: if an existing structure B pair representation Corresponding edges
. . . . (r,r,c) in a graph
exists in the PDB, use it as input. ey
o |In practice, few structures have available N I Ji
templates at inference L | 1
i (i ki i
K ik K
|
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Noisy Student Training

[Submitted on 11 Nov 2019 (v1), last revised 19 Jun 2020 (this version, v4)]

Self-training with Noisy Student improves ImageNet classification

steel arch bridge canoe

Qizhe Xie, Minh-Thang Luong, Eduard Hovy, Quoc V. Le
Train teacher model Infer pseudo-labels
with labeled data on unlabeled data

Data augmentation

Train equal-or-

Dropioit— larger student model
/ with combined data
and noise injected

Make the student a
new teacher
Stochastic depth
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1. Train “undistilled” model on PDB
dataset only

2. Predict structure for all available
sequences

3. Retrain network with distillation
dataset

During student training:

e /5% from self-distillation dataset
e 25% from PDB




AlphaFold mechanism:
Evoformer

« Recycling (three times)

tldr: Criss-cross attention to evolutionary details
+ triangulate attention for 3D awareness



Breaking down the Evoformer
Triangular self-attention

a / — |48 blocks (no shared weights) \
m et Column- o
. MsA gered wise _— cg‘ MSA
representation | — Sl gated 55 > | representation
) attention sition D
3 (s,r,0) 5 5 self- | (s,r,c)
Y] with pair tent Y
s attention
Triangle Triangle Tn;r;gle \
Pair update update attontion Pair
s e Cme —
= edges edges siagigg =
\ 9 9 node [

48 stacked blocks
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Review: transformers and self-attention

Scaled Dot-Product Attention Multi-Head Attention

Concat

p high attention
lS.caleci\t?;);lii?;c)duct l‘ﬂ& n . | low attention I—l |
‘%JJ&HJ%JJ She is eating a green apple.

Attention weights learn relationships
W between sequence positions

T

. QK
Attention(Q, K, V') = softmax
(@K,V) G
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Axial attention: encoding evolution

S ) WA )

[ FeedForward ] [ FeedForward
[Submitted on 28 Nov 2018 (v1), last revised 9 Jul 2020 (this version, v2)] [ LayerNorm ] [ LayerNorm
CCNet: Criss-Cross Attention for Semantic Segmentation
J4n)
Zilong Huang, Xinggang Wang, Yunchao Wei, Lichao Huang, Humphrey Shi, Wenyu Liu, Thomas S. Huang Y

[ Column Attention ]

MSA Transformer A
LayerNorm
Roshan Rao, Jason Liu, Robert Verkuil, ©2' Joshua Meier, 2 John F. Canny, Pieter Abbeel, ‘= Tom Sercu,
Alexander Rives A A
N A\
[ Attention ] [ Row Attention ]
) )
[ LayerNorm ] [ LayerNorm ]

Original attention block Axial transformer block
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Axial attention: encoding evolution

S ) WA )

115, 120 125,
SequenceA[ st A s @rREEN VEELN R ] [ FeedForward ] [ FeedForward
[ LayerNorm ] [ LayerNorm
Query for similar A
sequences %

[ Column Attention ]

\ T

T 15 120 s [ LayerNorm
sequence A [ 151 17 IR 1Y B R 6 G G D0 L P 3 57 [ [ [ ]

. Sequence B “=Spig—qe—rey PRt Y —- LT TR fanY [4A)
EVOIUUOnary Sequence C B S T A A B R BB EGY ERY A IV GBS B B (V4 'R (R BE b Y
relationships Sequenced Bl s T A AR FEIE W A W EIBIIL VR R L . .

Sequence E Bl A T A A IR Bl NGIEH] A IV il vV R R L [ Attentlon ] [ ROW Attentlon ]
Sequence F B T T A A B IR EEN ESH ERE A :r; M V H R L T T
[ LayerNorm ] [ LayerNorm ]

Original attention block Axial transformer block
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Axial attention: encoding evolution

SequenceA[ B s T & E R EE R R E ] Y Row-wise a‘ttention Captures
intra-sequence relationships
Query for similar e Column-wise attention captures

sequences
evolutionary relationships
\ 4
I 115 120 )25
SequenceA[ Bl S T A A IS 'R REN UG8 EHY A W IS . k¥4 R R (K ]

) Sequence B “~FF ST KK TP R PTG R AV e =
EVOIUtlonary SequenceC [F's T A A FR[FGH AV Bl v R R L
relationships  sequenceo [F s v A 'a [E R [El6 W A MBIV R R [L
Sequencet JEIA T A A ERF @ A VBBV IR R L
\ SequenceF Bl T T A A RFIEH AN PM v e rR L
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Aim: capture 3D constraints

Triangular self-attention . .
in learned embeddings.
Multiplicative update

a / 48 blocks (no shared weights) \
m et Column- 2
. MsA gered wise _— (g . MsA
representation | — Sl gated 55 > representation
) ko) attention P sition D ‘ o)
Y] & with pair tent Y i
s attention
Triangle Triangle Tn;r:gle '
Pair update update . Pair
tati »|  usin usin, - pgieeten —» | representation
o . g out 031 incomign SiEde i (r,r,c)
(rr.c) edg esg S esg starting i I
\ 9 9 node

Self-attention update
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Triangular self-attention: encoding graph structure

e Pairwise representation captures
relationships between residue
positions

o l.e. captures positions in close
contact
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Triangular self-attention: encoding graph structure

e Pairwise representation captures

relationships between residue
- b Pair representation Corresponding edges
positions (r,r.c) in a graph
o l.e. captures positions in close ik
contact

e Graph structures represent these
edge relationships well
o Aim: update transformer learning
to implicitly capture graph
relationships

\ n
i ij
|
g ki Jk
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Triangular self-attention: enforcing 3D common sense

e If pairwise edges are to
represent distances in 3D
space, they should obey the
triangle inequality

o Note: the inequality refers to
distances between
coordinates rather than the
3D coordinate positions

Berkeley
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Triangular self-attention: enforcing 3D common sense

e If pairwise edges are to
represent distances in 3D
space, they should obey the
triangle inequality

e Output values by the naive
attention mechanism may
violate this

o need to implement a soft
constraint

3+6>8




Triangular self-attention: multiplicative update

e To update pairwise representation at {i, j},
take the outer product of {i, k} and {j, k} for
all k, and update with new outer product

T
\
i
\

®/‘ ji
k‘

& = sigmoid (Linear(zij))

Zij = gi;j © Linear(LayerNorm(> , a;x © bji))
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Triangular self-attention:
attention update

e To update attention value of painwise
representation at {i, j} (“starting
node”), update by the attention value
at {i,k} for all k.

s . Triangle self-attention around
o Additionally: bias the query-key starting node
multiplication {i, j} by value at {i, k}
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Triangular self-attention:
attention update

Algorithm 13 Triangular gated self-attention around starting node

def TriangleAttentionStartingNode({z;;}, ¢ = 32, Nheaa = 4) :

# Input projections

e | To update a‘.ctentlor) v.alu“e of p.alrJW|se I g 4= LgorlNammls;)
representation at {i, j} (“starting 2 g, kP, vk = LinearNoBias(zi;)
. © g g Vg ’
node”), update by the attention value 3: bt = LinearNoBias(z:;)
. ’ K E
at {i,k} for all k. 4: g}y = sigmoid (Linear(zi;))

o | Additionally: bias the query-key
multiplication {i, j} by value at {i, k}

# Attention

-
5 a?jk = softmaxy, (% q?j k?k + b?k)

—h ok T
6: 0 = 85 O D p Qg Vik

# Output projection
7: Z;; = Linear (concath (of]))

8: return {Z;}
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Triangular self-attention:
attention update

e Repeat for “ending nodes”: j
o i.e. having just updated attention
value at {i, j} by all {i, k} V k, we
now update attention value at {j, i}
. . Triangle self-attention around Triangle self-attention around
by attention values at {j, k} V k. starting node ending node

U f*.’ R
FANNR 2 /
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Integrating graph and evolutionary representations

Bias from pairwise representations added to the
corresponding {i, j} position in row attention,
followed by outer product mean

Corresponding edges :

(rrc) in a graph

UNIVERSITY OF CALIFORNIA

a
’ MSA
% ’;(sr.c.;. .....

.

Row attention
with bias

Outer product
mean

h

a

stj

h

st

-
=|softmax; (% q” kgj + bffj)

= softmax; (% qi}iTkZ-)

= flatten (means (asi ® bsj) )




Evoformer: Summary

Axial attention Triangular self-attention
Row and column-wise
attentlon aCross MSA — |48 blocks (no shared weights) . .
Triangular attention \
o Fiow dred Column- mechanism to induce 5
‘ MSA geeed o _— g MSA
% repre(:jn;)a el attention g:et;_d sition graph and 3D space » %irepr?:ir:)a "
vl with pair : . . [
bias e understanding in
pairwise representation
: Triangle Triangle Tn';r:fg-Ie = ‘
rprosetaton Communicate between |4 g g, ststion > | rprecanaton]
3 ¥ v aroun
| MSA and pair S il Biaking e
— representations by bias -
terms and outer Outputs are fed into
product means the next block
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AlphaFold mechanism:
Structure Module

Tl,dr: simplify prediction by considering protein structures as rigid groups connected by “joints”.



How should we represent the 3D structure?

Idea 1: As a point cloud of 3D
coordinates
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How should we represent the 3D structure?

Idea 1: As a point cloud of 3D

coordinates
- issue: lacks 3D “equivariance”

Same object in different orientations
have different representations.

We want same object in different
orientations to the same
representation
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How should we represent the 3D structure?

Idea 1: As a point cloud of 3D For any rotations applied to
coordinates the input, we want our model

i B . . . to apply that same rotation
- issue: lacks 3D “equivariance

to the output:

Same object in different orientations
have different representations.

We want same object in different
orientations to the same

representation

g: rotation
f: function (e.g. neural net)
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How should we represent the 3D structure?

Domain Q Data on the Domain X (R?) Function F(X(Q))
+Symmetry Group 6 +Group Representation p(6)  w/ symmetry inductive bias
(+Data Symmetry)

Idea 2: Use equivariant neural network

architectures from geometric deep )
learning.
> Details are outside the scope of this TR g T®) St mats ) Grep= ey

lecture, but such methods are often complex
and computationally expensive.

Graph G = (V,E) Permutation matrix P Equivariant message passing
Permutation group X, Rotation R F(PXR, PAPT) = PF(X,A)R
Source:

https://thegradient.pub/towards-geometric-deep-learning/
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How should we represent the 3D structure?

Idea 3: as “rigid blobs” with translation
and rotation matrices from a reference
frame

Figure by: Nazim Bouatta




AlphaFold representation: “Residue gas”

backbone

Figure by: Nazim Bouatta

e Represent each residue as a triangle with {N, Ca, C} as vertices.
e Backbone is a series of tiled triangles in 3D.
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Residue gas representation

Figure by: Nazim Bouatta

e “Chunk up” the structure, and consider each residue as “independently floating”.
o Network learns to place the backbone frames sequentially.

e All frames are initialized at the origin
o Termed “black hole initialization”
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Representing residue positions as transformations

e Each is represented as a rigid
frame transformed by a tuple of
rotation (R) and translation (¢)
matrices from the origin:

o Rotation: R, € R3x3
o Translation: 7, € R®

e Obtained from 3D coordinates via the

Gram-Schmidt process

Figure by: Nazim Bouatta
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Structure module: overview

9

Sequence & pair inputs —— < Resolve side chain

o>
from evoformer Pai 3.4, vad ositions from predicted
‘ represean';ation ”Nm,if 0@‘1 P . P
¥ torsion angles

} (r.rc)

o
- 8 blocks (shared weights) ?
Predict X angles

and compute all
atom positions
@ Single repr. () _‘L’('PA + qu |Single repr. (,c) )—iT—_>
‘ — module NYSERl- 1,0

= 1

o

Predict relative
rotations and

translations
/*\ £
Vod .
~ O, Yo’ = Backbone positions
I':;ic:l;fet,))n:nféa(;r,l:;s Backbone frames

(r, 3x3) and (r,3)

-

(initially all at the origin) \_
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Invariant Point Attention

Workhouse of the structure
module: Invariant Point
Attention (IPA).

- A modified attention mechanism d

toacton T, = (R, t) tuples.

Berkeley
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@ [Single répr. (re) —|

Pair
representation
(rrie)

Predict relative
rotations and
translations

8 blocks (shared weights)

T
Predict X angles \
and compute all
atom positions
; J
{p 'Single repr. (r,c) | — >

£
\

o
Backbone frames

(r, 3x3) and (r,3)
(initially all at the origin)

N

V4
L «
Backbone frames
(r, 3x3) and (r,3)




Invariant Point Attention

From Evoformer

al. = softman w, (% thk;-L T b?j

1] )
Query/key over single Bias from
representation pairwise

representation
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Invariant Point Attention

Bias by attending to frame transformations

From Evoformer for residues / and j
h _ [ _ kh + bh —»hp o K'P ?
a;; = softmax; \[ qZ T y
Query/key over single Bias from
representation pairwise

representation

Note: L2-norm between Euclidean matrices is
invariant by construction, since the distance
between matrices remains constant if the
same rotation is applied to both!
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Backbone update

e Predict backbone frames from e S,

. 5.7 :
Pair . Y t , °’ .&'&L
IPA module output [y N
\ %
d 8 blocks (shared weights) ?
Predict X angles

and compute all
atom positions

1 A
QTP |Single repr. (r,c) | —_—

IPA
module

@ [Single répr. (r0) —|

Y
Predict relative
rotations and
translations

£
~
b —h
-~ (o) N - — 5
S e Bacl;bone frames
(r, 3x3) and (r,3)
(initially all at the origin) \_ (r, 3x3) and (r,3) )
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Backbone update

e Rotation matrices are stored as quaternions
o Rather than as a R®3 matrix, use a R*to denote

rotation axis vector and associated angle
m  Only two dimensions need to be provided for the axis
vector to define a unique rotation

o Reduces memory usage
o First component is fixed to 1, and network predicts
the remaining 3 components.
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Rotation axis

Rotation angle

Y




Backbone update

Algorithm 23 Backbone update

def BackboneUpdate(s;) :
1: bi,ci,di,Ei = Linear(s;)

Predict rotation (quaternion

components) and translation vector
# Convert (non-unit) quaternion to rotation matrix.

0k (ai,bi,ci,di) — (Lbi,cz‘,di)/\/l —+ b? -+ C%,—I—d?

ai +b7 - cf - df  2bic; - 2a,d; 2byd; + 2a;c; Convert back to R representation
3: RZ = 2b101 P 2aidi a? = bzz arF sz = d? 2Cidi = 2a2-b2-
2b;d; — 2a;c; 2¢;d; + 2a;b; (1,7’2 — bzz - C,L2 + dlz

4: Tz = (Rz,fz)

5: return T;
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Placing the side chain atoms

e Predicting frame transformations only places the

backbone atoms
e To place the side chains, we also predict the

torsion angles.
o Consider proteins as having “moveable

joints”, while other components are kept
rigid.
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Predicting torsion angles

e Predict torsion angles @ € R?with a

- 4

shallow ResNet e Sl gl
. representation N %&:{ %
e 7 total types of rotations: [ bR

I A
O B acC k b one: {w , (p ; lp } d 8 blocks (shared weights) Predict;c — =
H - and comp_u?e all
@) SldeChaIn: {X15X25X35X4} ato—mimjfmons
M q,gp Single repr. (r,c) !

Predict relative
rotations and
translations

—_—

r
y S E—
- (o) N e~ < >
Eackbona inos Backbone frames
(r, 3x3) and (,3)
(initially all at the origin) \_ (r, 3x3) and (,3) J

Berkeley

UNIVERSITY OF CALIFORNIA




Predicting torsion angles

aatype bb P X1 X2 X3 X4
ALA N,C*C,C% O . - - _
ARG N,C* C,C#? O (03] 63 Ne N71, N72, C¢
ASN N,C* C,C#? O (03] Né2, Qft = -
ASP  N,C*C,CP O  Cv

CYS N,C*, C,C# O S - .

GLN N,C>, C,C# O (03] ct Ne2, Ot

GLU N,C*,CCP O © c?

GLY N, C+, C (o] - - -

HIS N,C* C,C# O c C%2, N1, Cet, N<2 -

ILE N,C* C,C# O (C",C? ct

LEU N,C* C,C# O c Cco, co2 < -
LYs N,C* C,C% O c co Ce N¢
MET N,C* C,C%f O c s Ce

PHE N,C*, C,C%f O (024 C%1, C%2, Cet, C2, C¢

PRO N,C* C,C#? O (ox) c?

SER N,C* C,C%f O o7 -

THR N,C* C,C# O (C?,0M -

TRP N,C* C,C# O c C%, C%, C*2, C3, N1, C"2, C¢2, C¢3

TYR N, C*,CCP O C7 |co, ¢, ¢, 62, 0, ¢¢

VAL N,C% C,Cf O (C,C? =

Note: some residues are symmetric and has two “correct” torsion angle values
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Each atom is grouped into
a “rigid group” based on
their dependence on a
specific torsion angle
Number of X angles
present is dependent on
the amino acid identity.




From frames to coordinates

Torsion angles

e Map rigid body coordinates onto the e / e
backbone frames with the predicted g rnd /
torsion angles to obtain final atom T Uz e v - % A: - o 38
positions // - N
L
o Coordinates of rigid bodies in .
. ackbone frames
reference frame are defined as Q}* 1
constants Q. 0 P
. @ Q ) §
e Molecular dynamics (non-deep R e Al ‘q.»,ﬁ( %:{,
learning) used on final coordinates to . @O “p S °£
. Q.
relax explicit clashes ¢ ¥

Berkeley

UNIVERSITY OF CALIFORNI,




Predicted LDDT (pLDDT)

e |DDT: |ocal distance difference test AP ERI

Vi high (pLDDT > 90
o A per-atom measure of local I LB 50D
Confident (90 > pLDDT

accuracy > 70)
e Train model to predict IDDT-Ca using Low (70 > pLDDT > 50)
ground truth structure Il Very low (pLDDT < 50)
. AlphaFold produces a per-
O I'e' pLDDT IS a measure Of residue confidence score
predicted confidence {PLRET] hetween 0:and 100,
Some regions with low pLDDT
o One value per residue may be unstructured in

isolation.

e Experimentally shown to correspond
well to experimental accuracy
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Other outputs

25 '.__.; :

e Distogram
o “Distance” + “histogram”
o Bin pairwise contacts into 64 discrete
bins
e Experimentally resolved prediction

o Per-atom prediction with values between -—
(O! 1) 200

0 50 100 150 200

50 ;..; 2
75
100
125

150 S
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Structure module: summary

Process coordinates into
backbone frames of rotation &
translation from origin
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@ [Single repr. (rc) —

Pair

representation

(r.rc)

—

IPA
module

Predict torsion angles with
separate ResNet to place side
chains

° \(:
&

()

g
¥
P4

2

m,,

ot
°

4

L

°

&

©
%

=4

- 8 blocks (shared weights)

Predict X angles
and compute all
atom positions

t fﬁP Single repr. (r,c) —lT_

v
Predict relative
rotations and

translations
i
- © P
%k &
Backbone frames
(r, 3x3) and (r,3) Backbone frames

(initially all at the origin)

)

N

(r, 3x3) and (r,3

Final output of atom
positions (placed with
idealized bond lengths &
predicted angles) and
auxiliary outputs (e.g. pLDDT)

Modified attention
mechanism that attends to
relationships between
frame representations.




AlphaFold mechanism:
Loss Functions

TLdr: L2 distance on frames + losses to enforce contributions from all network components



Assessing structure prediction quality

100

e Desiderata for a loss function: )
o Differentiable sl 3%
o Computationally fast to calculate 4
e |dea l: distance root-mean squared o *
distance (dRMSD) > ol 3
o Take pairwise distances and calculate ?
root-mean-squared distance 20—+
e However, it does not account for chirality 0
o Recall: mirror image of a protein might o & \60&/0« \csé"cd
et

have different biological functions

Bimodal errors for AlphaFold trained
with the chirality-unaware dRMSD loss
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Frame Adjusted Point Error (FAPE)

e leverage the transformations associated with predicted coordinates to
project back to the reference frame:

iij = T._ 1o ij

“Undo” the predicted from-reference-frame transformation

)—('true Ttrue- L Rlrue
J

g = \/||sz true||2 + € Calculate L2 distance for coordinates in reference frame orientation
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Training loss functions

0.5LgAPE + 0.5Laux + 0.3Lgist + 2.0Lmsa + 0.01Lcons training
05LFAPE + 0.5Laux + 0-'?)‘Cdist + 2.0Lmsa + 0-01£conf <+ O-Ol‘cexp resolved 1 1-O£Viol ﬁne'tuning

Training losses are designed to emphasize
contributions from different architectural parts:
e L  :averaged FAPE and torsion angle losses
from intermediate structure module layers
L,...: distogram prediction (cross-entropy)
o L masked-MSA prediction (cross-entropy)
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Training loss functions

0.5LpapE + 0.5Lux + 0.3Lgist + 2.0Lmsa + 0.01Lcont training
0-5LFAPE + 0-l&:"‘caux =+ O-'?)‘Cdist + 2.0Lmsa + 0-01£'conf <+ 0-01£exp resolved T+ 1-OAcviol ﬁne'tuning

e enforces contributions from

structure module
o L averaged FAPE and torsion angle losses e Torsion angles calculated as

au
from intermediate structure module layers unit-circle normalized L2-loss
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Training loss functions

0.5LpapE + 0.5Lux + 0.3Lgist + 2.0Lmsa + 0.01Lcont training
0-5LFAPE + 0-E"Laux =+ O-'?)‘Cdist + 2.0Lmsa + 0-01£'conf <+ 0-01£exp resolved T+ 1-OAcviol ﬁne'tuning

e C(Calculates cross-entropy
between real and predicted
distogram

e Enforces accuracy of pairwise
L...: distogram prediction (cross-entropy) relationships
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Training loss functions

_ J 0.5LFapE + 0.5Laux + 0.3List + 2.0Lmsa + 0.01Lcont training
0-5LFAPE T 0-E"Laux + O-'?)‘Cdist + 2-()Acmsa G 0-01£'conf + 0-01£exp resolved 1 1-OAcviol ﬁne'tuning

e BERT-like masked language
modelling loss

e Enforces contributions from the
MSA trunk

e L __:masked-MSA prediction (cross-entropy)
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Finetuning loss functions

0.5LgAPE + 0.5Laux + 0.3Lgist + 2.0Lmsa + 0.01Lcons training
05LFAPE + 0.5Laux + 0-'?)‘Cdist + 2.0Lmsa + 0-01£conf <+ O-Ol‘cexp resolved 1 1-O£Viol ﬁne'tuning

Some are only used during finetuning:
exp resolved: finetunes the
experimentally-resolved output with explicit
labels from high-resolution structures

L ..;; distogram prediction (cross-entropy)
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Recycling

¢ —— (@rereet)

Genetic | —p
database
search

a?u_u_<

Input sequence

Drrrers g
i
SARRE]

MSA

representation| -9

(s.re):

L, Structure

database
search

*!

Templates

For some proteins, insufficient
recycling cycles can greatly
impact performance.
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Evoformer
(48 blocks)

B s o

Pair
representation |
(rre) |
|

X

- ——

Structure
module
(8 blocks)

High
confidence

3D structure

i

« Recycling (three times)

recycle 1

recycle 2

e Output single and pair
representations are reused as
inputs to the Evoformer!

Unlike stacked blocks, weights
are shared across iterations
o Uses stop-gradient after
each iteration.

recycle 3 recycle 4 recycle 5

Image source: Sergey Ovchinnikov



Test set of CASP14 domains Test set of PDB chains

Ablati )
a‘ lonS With self-distillation training - -
Baseline T - lt,
(13 7
[ ] KnOdeOWFl StUdy tO See No templates -] _
which network components No auxiiary distogram head - ot
. No raw MSA |
are mostim p ortant (use MSA pairwise frequencies) 7]
No IPA (use direct projection) — == - o I8
No auxiliary masked MSA head - . — ¥ - =
No recycling - == - roi 8
No triangles, biasing or gating | = i =
(use axial attention) = "o
No end-to-end structure gradients ey e
(keep auxiliary heads) | =t 7] g
No IPA and no recycling - ——=—_ — e
T T T T T T T
-20 -10 0 -4 -2 0 2
GDT difference compared IDDT-Ca. difference
with baseline compared with baseline

Higher is better
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Limitations and Open Problems

tl;dr: generalization failures; moving towards dynamical & heterogeneous systems.



Alternative methods

e RoselTAFold
o Methodologically similar to
AlphaFold2, released after CASP14
e ESMFold and OmegafFold:
o Replaces MSA input with a protein
language model
e OpenFold
o PyTorch and open-sourced
reimplementation of AlphaFold
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AlphaFold2
Experimental

Source: https://github.com/aglaboratory/openfold/



Limitations: Generalization failures a

. . ' ' \}e\)
e PDB biases towards crystallizable proteins with stable 7 g

structure )
o Performance degrades on antibody loops and intrinsically i

disordered regions
e MSA trunk relies on the existence of homologs sngeseq  Ful

o Performance degrades for proteins without homologs 0.83 | 0.88) g5
o Non-MSA methods such as OmegaFold and ESMFold e o
performs better for these use cases. |

Source: Piovesan et al.

0.47 |

S a7t o0 1.0
0 40 “ig0 S ¥ 0
ﬂ\? a? 0\ »(‘Pg a? O\ »(‘PX

)
< P&Q‘(\$O‘"e PXQ\\Q@(’Q

Source: Lin et al.
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https://www.biorxiv.org/content/10.1101/2022.07.20.500902v1.full.pdf
https://www.biorxiv.org/content/10.1101/2022.03.03.482768v1.full.pdf

Limitations: Conformationally static
° Proteins are dynamic! Text-to-image generative model
e Because AlphaFold is trained on

crystallized structures, it is only capable
of predicting static structures s s, W
e Recent works finetune AlphaFold as a

UNet —

Sequence-to-structure generative model

generative model to predict a distribution Uy
over structures instead 3\{5‘3 -
o Conceptually recapitulates the Boltzmann 5 Apiirod
. . . MEEKLKKTKIIFVVGG..C=p
distribution

Source: Jing et al.
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https://arxiv.org/abs/2402.04845

Limitations: Modelling Complexes

e Multimers

o AlphaFold2 at CASP14 was unable to model multi-chain protein assemblies (i.e.
quaternary structure)

o Community hacks arounds include adding a glycine linker to “glue” multiple chains
into one sequence
o AlphaFold-Multimer model released in 2022.
e Nucleic acids

o Many important protein functions occur in tandem with nucleic acids, for e.g.
protein-RNA interactions, gene editing enzymes, etc.

o Recent work such as RoseTTAFold All-Atom (Krishna, 2024) make progress towards
predicting structure for these complexes
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