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AlphaFold: Biology’s AlexNet moment?
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How can the key ingredients for AlphaFold’s success be used 
in other AI for biology tasks?



Why study AlphaFold?

● As a tool for forming biological 
hypotheses
○ Democratization of estimated structure 

unlocks new opportunities in 
understanding biological mechanisms

● As a repertoire of techniques
○ Transferable lessons for capturing 

inductive biases in scientific data
○ Bridges the adoption of machine 

learning methods for science
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Example: AlphaFold-predicted structures help us hypothesize how 
sequence-level mutations in the SARS-CoV2 Omicron variant 
impacts its mechanism.
(Source: van Vuren et al., 2022)



Background:

The Protein Folding Problem

tl;dr: Predict 3D coordinates from 1D string
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What is a protein?

● Workhorse of biological functions
● Built as an assortment of 20 types of 

amino acids
○ Each amino acid consists of a 

distinct assortment of atoms
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What is a protein sequence?

● Since there are only 20 
amino acids, we can give 
each amino acid an letter as 
an abstraction
○ Allows for representation 

as a string, which is more 
amenable to computation
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What is a protein structure?

● Secondary structure: 
Interactions between 
atoms cause the series 
of amino acids to form 
regular substructures

● Tertiary structure: 
secondary structures are 
assembled into folds in 
3D space
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Image source

https://www.recursion.com/news/demystifying-protein-structure-prediction-models-alphafold-rosettafold-esmfold-and-beyond


Backbone structure vs. all-atom structure
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● Protein backbone atoms: (N, C𝛼, C)
● Side chain groups (denoted generically as R) determine the amino acid identity

○ Analogy: “protrudes” from the backbone like t-shirts on this clothesline, where color of the 
t-shirts defines the sequence.

● The all-atom structure include positions of the backbone and sidechain atoms.



The protein folding problem

● Proteins seek to “fold” into a structure that 
minimizes free energy

● Anfinsen's dogma: 3D structure of (most) 
natural proteins is determined only by its 
amino acid sequence.

● Protein folding problem: predicting 3D 
structure from 1D sequence.
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The protein folding problem

● Levinthal’s paradox: searching through 
possible structural configurations for a 
protein should take longer than the age of the 
universe, yet proteins can fold in seconds.

Determining structure from sequence alone should 
theoretically be possible from our understanding of 

nature, yet very difficult from our current 
understanding of biophysics.
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Experimentally-resolved structure is expensive & slow

● Structures typically 
experimentally resolved by 
X-ray crystallography, 
cryo-EM, etc.

● Can take up to months and 
years to resolve a single 
structure
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Source: 
https://university.pressbooks.pub/chemistryucf/chapter/10-8-x-ray-crystallography/



Sequence data is more abundant than structure
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Source: https://www.genome.gov/about-genomics/fact-sheets/DNA-Sequencing-Costs-Data



Benchmarks drive progress: the CASP competition

● CASP: Critical Assessment of Structure 
Prediction (CASP)
○ Biennial competition with structural 

data for the held out set generated as 
teams prepare their predictions.

● Traditional approaches typically leverage 
biophysics for predictions
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AlphaFold mechanism:

Overview

tl;dr: balancing provision of evolutionary and graph-like priors with effective end-to-end learning
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Inductive biases in conventional architectures
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CNNs: adopts ideas from signal processing to 
learn composite lower level features

Transformers: attention designed to capture local structure 
(grammar) and global structure (content coherence)

What are the inductive biases to capture for protein structure prediction?



Designing an architecture for biological inductive biases
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harness additional 
sequence-based priors

learn structural features from 
latents

generate structures



18

AlphaFold mechanism:

Training Data

tl;dr: Labelled structures, unlabelled sequences, and self-distillation



The Protein Data Bank (PDB)
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● Publicly available 
dataset of 
experimentally-resolved 
protein structures.



Incorporating labelled and unlabelled data

● Consider pairs of {sequence, structure} data as {input, label}.
○ As of 2024:

■ # of {sequence, structure} pairs in PDB:  218,196

■ # of sequence-only data in UniRef50: 63,849,054

○ Relatively small labelled dataset, but a large number of unlabelled sequence data

● Aim – improve structure prediction using unlabelled sequence data:
○ 1. Capture co-evolutionary patterns from sequence
○ 2. Self-distillation – use labelled sequences to predict labels for unlabelled 

sequences
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Coevolution

Image credit: Hetu Kamisetty
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If two positions are in 
contact, then if one is 
mutated, the other also 
loses function.

Thus, statistically observed 
pairs of residues that 
“change together” across 
evolution often denotes 
contact.



Multiple sequence alignment (MSA) input

● Multiple sequence alignment:
○ Statistically line up similar string 

positions across sequences
○ Used to infer evolutionary 

relationships

● If a statistical sequence pattern is 
preserved across species, it’s likely 
to imply function
○ Based on principles of Darwinian 

evolution

22

Input 
sequence

MSA

Query for similar 
sequences



A natural language analogy…

…a delicious Pad Thai recipe. You’ll need rice noodles, shrimp, chicken, tofu, 
peanuts, scrambled eggs, red peppers, and bean sprouts.

This delicious thai dish is traditionally made up of rice noodles tossed with a deeply 
flavored, sweet and sour sauce. The sauce ...

Our favorite vegan Pad Thai recipe involves stir-frying rice noodles, tofu, and peanut 
sauce in a wok, with bean sprouts and vegetables added to taste. You’ll love…
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Pad Thai is stir-fry dish made with rice noodles, shrimp, chicken (or tofu), peanuts, 
all sautéed together in a wok and tossed in a delicious sauce.

Text 1

Text 2

Text 3

Text 4

A pad thai recipe that doesn’t include rice noodles would likely 
be removed by the editor, because it would no longer be pad thai! 
Thus, rice noodles is observed to be conserved across recipes.



Template Input

● For all sequence homologs found during 
MSA construction: if an existing structure 
exists in the PDB, use it as input.
○ In practice, few structures have available 

templates at inference
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Noisy Student Training
1. Train “undistilled” model on PDB 

dataset only
2. Predict structure for all available 

sequences
3. Retrain network with distillation 

dataset

During student training:
● 75% from self-distillation dataset
● 25% from PDB
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AlphaFold mechanism:

Evoformer

tl;dr: Criss-cross attention to evolutionary details
+ triangulate attention for 3D awareness
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Axial attention Triangular self-attention

Breaking down the Evoformer

48 stacked blocks



Review: transformers and self-attention
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Attention weights learn relationships 
between sequence positions



Axial attention: encoding evolution

29

LayerNorm

Attention

FeedForward

LayerNorm

Row Attention

FeedForward

LayerNorm

Column Attention

LayerNorm LayerNorm

Original attention block Axial transformer block



Axial attention: encoding evolution
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LayerNorm

Attention

FeedForward

LayerNorm

Row Attention

FeedForward

LayerNorm

Column Attention

LayerNorm LayerNorm

Original attention block Axial transformer block

Evolutionary 
relationships



Axial attention: encoding evolution
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● Row-wise attention captures 
intra-sequence relationships

● Column-wise attention captures 
evolutionary relationships

Evolutionary 
relationships
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Multiplicative update

Triangular self-attention

Self-attention update

Aim: capture 3D constraints 
in learned embeddings.



Triangular self-attention: encoding graph structure

● Pairwise representation captures 
relationships between residue 
positions

○ I.e. captures positions in close 

contact
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Triangular self-attention: encoding graph structure

● Pairwise representation captures 
relationships between residue 
positions

○ I.e. captures positions in close 

contact

● Graph structures represent these 
edge relationships well

○ Aim: update transformer learning 

to implicitly capture graph 

relationships
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Triangular self-attention: enforcing 3D common sense
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● If pairwise edges are to 
represent distances in 3D 
space, they should obey the 
triangle inequality

○ Note: the inequality refers to 

distances between 

coordinates rather than the 

3D coordinate positions



Triangular self-attention: enforcing 3D common sense

● If pairwise edges are to 
represent distances in 3D 
space, they should obey the 
triangle inequality

● Output values by the naive 
attention mechanism may 
violate this
○ need to implement a soft 

constraint
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3 + 6 > 8

3 6 

8

3 + 6 < 10

3 6 

10
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Triangular self-attention: multiplicative update
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k ● To update pairwise representation at {i, j}, 
take the outer product of {i, k} and {j, k} for 
all k, and update with new outer product
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Triangular self-attention: 
attention update

● To update attention value of pairwise 
representation at {i, j} (“starting 
node”), update by the attention value 
at {i,k} for all k.

○ Additionally: bias the query-key 

multiplication {i, j} by value at {i, k}
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j

Triangular self-attention: 
attention update

● To update attention value of pairwise 
representation at {i, j} (“starting 
node”), update by the attention value 
at {i,k} for all k.

○ Additionally: bias the query-key 

multiplication {i, j} by value at {i, k}
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Triangular self-attention: 
attention update

● Repeat for “ending nodes”:
○ i.e. having just updated attention 

value at {i, j} by all {i, k} ∀ k, we 
now update attention value at {j, i} 
by attention values at {j, k} ∀ k.
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Integrating graph and evolutionary representations

Row attention
with bias

Column 
attention

Bias from pairwise representations added to the 
corresponding {i, j} position in row attention, 
followed by outer product mean

Outer product 
mean
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Axial attention Triangular self-attention

Evoformer: Summary

Row and column-wise 
attention across MSA

Communicate between 
MSA and pair 

representations by bias 
terms and outer 
product means

Triangular attention 
mechanism to induce 
graph and 3D space 

understanding in 
pairwise representation

Outputs are fed into 
the next block
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AlphaFold mechanism:

Structure Module

Tl;dr: simplify prediction by considering protein structures as rigid groups connected by “joints”.



How should we represent the 3D structure?

Idea 1: As a point cloud of 3D 
coordinates
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How should we represent the 3D structure?

Idea 1: As a point cloud of 3D 
coordinates
→ issue: lacks 3D “equivariance” 

45

Same object in different orientations 
have different representations.

We want same object in different 
orientations to the same 
representation



How should we represent the 3D structure?

Idea 1: As a point cloud of 3D 
coordinates
→ issue: lacks 3D “equivariance” 
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For any rotations applied to 
the input, we want our model 
to apply that same rotation 

to the output:

g: rotation
f: function (e.g. neural net)

Same object in different orientations 
have different representations.

We want same object in different 
orientations to the same 
representation



How should we represent the 3D structure?
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Idea 2: Use equivariant neural network 
architectures from geometric deep 
learning.

→ Details are outside the scope of this 
lecture, but such methods are often complex 
and computationally expensive.

Source: 
https://thegradient.pub/towards-geometric-deep-learning/



How should we represent the 3D structure?
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Idea 3: as “rigid blobs” with translation 
and rotation matrices from a reference 
frame

→ functions built on this representation is 
equivariant by construction
→ easily adaptable as input to transformer 

Figure by: Nazim Bouatta



AlphaFold representation: “Residue gas”

● Represent each residue as a triangle with {N, C𝛼, C} as vertices.
● Backbone is a series of tiled triangles in 3D.
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Figure by: Nazim Bouatta



Residue gas representation

● “Chunk up” the structure, and consider each residue as “independently floating”.
○ Network learns to place the backbone frames sequentially.

● All frames are initialized at the origin
○ Termed “black hole initialization”

50

Figure by: Nazim Bouatta



Representing residue positions as transformations

● Each residue is represented as a rigid 
frame transformed by a tuple of 
rotation (R

i
) and translation (t

i
) 

matrices from the origin:
○ Rotation: R

i
 ∈ ℝ3x3

○ Translation: T
i
 ∈ ℝ3

● Obtained from 3D coordinates via the 
Gram-Schmidt process
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Figure by: Nazim Bouatta



Structure module: overview
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Sequence & pair inputs 
from evoformer

Resolve side chain 
positions from predicted 

torsion angles

Backbone positions



Invariant Point Attention
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Workhouse of the structure 
module: Invariant Point 

Attention (IPA).

→ A modified attention mechanism 
to act on Ti = (Ri, ti) tuples.



Invariant Point Attention
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From Evoformer

Query/key over single 
representation

Bias from 
pairwise 

representation



Invariant Point Attention
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From Evoformer
Bias by attending to frame transformations 
for residues i  and j 

Query/key over single 
representation

Bias from 
pairwise 

representation

Note: L2-norm between Euclidean matrices is 
invariant by construction, since the distance 
between matrices remains constant if the 
same rotation is applied to both!



Backbone update

● Predict backbone frames from 
IPA module output
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Backbone update

● Rotation matrices are stored as quaternions
○ Rather than as a ℝ3x3 matrix, use a ℝ4 to denote 

rotation axis vector and associated angle
■ Only two dimensions need to be provided for the axis 

vector to define a unique rotation

○ Reduces memory usage
○ First component is fixed to 1, and network predicts 

the remaining 3 components.

57



Backbone update
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Predict rotation (quaternion 
components) and translation vector

Convert back to ℝ3x3 representation



Placing the side chain atoms

● Predicting frame transformations only places the 
backbone atoms

● To place the side chains, we also predict the 
torsion angles.
○ Consider proteins as having “moveable 

joints”, while other components are kept 
rigid.
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Predicting torsion angles

● Predict torsion angles 𝛼 ∈ ℝ2 with a 

shallow ResNet
● 7 total types of rotations:

○ Backbone: {ω,φ,ψ}
○ Sidechain: {χ

1
,χ

2
,χ

3
,χ

4
}
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Predicting torsion angles
● Each atom is grouped into 

a “rigid group” based on 
their dependence on a 
specific torsion angle

● Number of χ angles 
present is dependent on 
the amino acid identity.
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Note: some residues are symmetric and has two “correct” torsion angle values



From frames to coordinates
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● Map rigid body coordinates onto the 
backbone frames with the predicted 
torsion angles to obtain final atom 
positions
○ Coordinates of rigid bodies in 

reference frame are defined as 
constants

● Molecular dynamics (non-deep 
learning) used on final coordinates to 
relax explicit clashes

Backbone frames

Torsion angles



Predicted LDDT (pLDDT)

● lDDT: local distance difference test
○ A per-atom measure of local 

accuracy
● Train model to predict lDDT-Cα using 

ground truth structure
○ I.e. pLDDT is a measure of 

predicted confidence
○ One value per residue

● Experimentally shown to correspond 
well to experimental accuracy
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Other outputs

● Distogram
○ “Distance” + “histogram”
○ Bin pairwise contacts into 64 discrete 

bins

● Experimentally resolved prediction
○ Per-atom prediction with values between 

(0, 1)
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Structure module: summary

65

Process coordinates into 
backbone frames of rotation & 

translation from origin

Modified attention 
mechanism that attends to 
relationships between 
frame representations.

Predict torsion angles with 
separate ResNet to place side 
chains

Final output of atom 
positions (placed with 
idealized bond lengths & 
predicted angles) and 
auxiliary outputs (e.g. pLDDT)



AlphaFold mechanism:

Loss Functions

Tl;dr: L2 distance on frames + losses to enforce contributions from all network components
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Assessing structure prediction quality

● Desiderata for a loss function:
○ Differentiable
○ Computationally fast to calculate

● Idea 1: distance root-mean squared 
distance (dRMSD)
○ Take pairwise distances and calculate 

root-mean-squared distance

● However, it does not account for chirality
○ Recall: mirror image of a protein might 

have different biological functions
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Bimodal errors for AlphaFold trained 
with the chirality-unaware dRMSD loss



Frame Adjusted Point Error (FAPE)

● Leverage the transformations associated with predicted coordinates to 
project back to the reference frame:
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“Undo” the predicted from-reference-frame transformation

Calculate L2 distance for coordinates in reference frame orientation



Training loss functions

Training losses are designed to emphasize 
contributions from different architectural parts: 
● L

aux
: averaged FAPE and torsion angle losses 

from intermediate structure module layers
● L

dist
: distogram prediction (cross-entropy)

● L
msa

: masked-MSA prediction (cross-entropy)
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Training loss functions

Training losses are designed to emphasize 
contributions from different architectural parts: 
● L

aux
: averaged FAPE and torsion angle losses 

from intermediate structure module layers
● L

dist
: distogram prediction (cross-entropy)

● L
msa

: masked-MSA prediction (cross-entropy)

70

● enforces contributions from 
structure module

● Torsion angles calculated as 
unit-circle normalized L2-loss



Training loss functions

Training losses are designed to emphasize 
contributions from different architectural parts: 
● L

aux
: averaged FAPE and torsion angle losses 

from intermediate structure module layers
● L

dist
: distogram prediction (cross-entropy)

● L
msa

: masked-MSA prediction (cross-entropy)
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● Calculates cross-entropy 
between real and predicted 
distogram

● Enforces accuracy of pairwise 
relationships



Training loss functions

Training losses are designed to emphasize 
contributions from different architectural parts: 
● L

aux
: averaged FAPE and torsion angle losses 

from intermediate structure module layers
● L

dist
: distogram prediction (cross-entropy)

● L
msa

: masked-MSA prediction (cross-entropy)
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● BERT-like masked language 
modelling loss

● Enforces contributions from the 
MSA trunk



Finetuning loss functions
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Some are only used during finetuning:
● L

exp resolved
: finetunes the 

experimentally-resolved output with explicit 
labels from high-resolution structures

● L
viol

: distogram prediction (cross-entropy)



Recycling
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● Output single and pair 
representations are reused as 
inputs to the Evoformer!

● Unlike stacked blocks, weights 
are shared across iterations

○ Uses stop-gradient after 
each iteration.

For some proteins, insufficient 
recycling cycles can greatly 
impact performance.

Image source: Sergey Ovchinnikov



Ablations

● “Knockdown study” to see 
which network components 
are most important
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Higher is better

Higher is better



Limitations and Open Problems

tl;dr: generalization failures; moving towards dynamical & heterogeneous systems.
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Alternative methods

● RoseTTAFold
○ Methodologically similar to 

AlphaFold2, released after CASP14

● ESMFold and OmegaFold:
○ Replaces MSA input with a protein 

language model

● OpenFold
○ PyTorch and open-sourced 

reimplementation of AlphaFold
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Source: https://github.com/aqlaboratory/openfold/



Limitations: Generalization failures

● PDB biases towards crystallizable proteins with stable 
structure

○ Performance degrades on antibody loops and intrinsically 

disordered regions

● MSA trunk relies on the existence of homologs
○ Performance degrades for proteins without homologs
○ Non-MSA methods such as OmegaFold and ESMFold 

performs better for these use cases.
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Source: Lin et al.

Source: Piovesan et al.

https://www.biorxiv.org/content/10.1101/2022.07.20.500902v1.full.pdf
https://www.biorxiv.org/content/10.1101/2022.03.03.482768v1.full.pdf


Limitations: Conformationally static

● Proteins are dynamic!
● Because AlphaFold is trained on 

crystallized structures, it is only capable 
of predicting static structures

● Recent works finetune AlphaFold as a 
generative model to predict a distribution 
over structures instead
○ Conceptually recapitulates the Boltzmann 

distribution

79

Source: Jing et al.

https://arxiv.org/abs/2402.04845


Limitations: Modelling Complexes

● Multimers
○ AlphaFold2 at CASP14 was unable to model multi-chain protein assemblies (i.e. 

quaternary structure)
○ Community hacks arounds include adding a glycine linker to “glue” multiple chains 

into one sequence
○ AlphaFold-Multimer model released in 2022.

● Nucleic acids
○ Many important protein functions occur in tandem with nucleic acids, for e.g. 

protein-RNA interactions, gene editing enzymes, etc.
○ Recent work such as RoseTTAFold All-Atom (Krishna, 2024) make progress towards 

predicting structure for these complexes
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