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background:
porotein folding 101



What is a protein?

sequence structure

Proteins can interact with
other proteins, performing
functions such as signalling
and transcribing DNA

Every protein is made up
of a sequence of amino
acids bonded together




protein structure = drug discovery

top view

side view

D

Example: AlphaFold-predicted structures help us hypothesize how
sequence-level mutations in the SARS-CoV2 Omicron variant
impacts its mechanism.

(Source: van Vuren et al., 2022)



protein structure prediction v drug discovery
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Enter: protein folding models

AlphaFold tutorial:
https://bit.ly/amyxlu-af2
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@ Experimental result

® Computational prediction



Example: Al for binder design

Demo from Google DeepMind’s AlphaProteo, released September 5 (today!)


https://docs.google.com/file/d/1i3dnoVec14sTumBX8C3_gCDLpybNLdmw/preview

Genentech
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Protein language models can learn structure...

AlphaFold2:

Uses an explicit
retrieval step
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..from large prediction models to foundation models?

Motivation:

Can we reuse parts
of large protein
folding models to
decrease training
costs for other
biological tasks?




..from large prediction models to foundation models?
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Characterizing a multimodal latent space
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Can we extract the latent space of
sequence-to-structure models as a
multimodal embedding?

— multimodal generation
One-shot generation of drug binders!
— multimodal search

Find new gene editing enzymes from obscure bacteria!



..furns out that it’s not so
straightforward i(

some mechanistic
interpretability findings:



Protein language models have massive activations

esm_s s_post_softmax s_post_mlip

ESMFold




Pretetr language models have massive activations

esm_s s_post_softmax s_post_mlip

ESMFold

LLaMA2-7B

Image source: Sun et al.
https://arxiv.org/pdf/2402.17762



https://arxiv.org/pdf/2402.17762

Protein language models have massive activations,
and these wacky features are really important
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Protein language models have massive activations,
and these wacky features are really important

Activations
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the original
performance entirely
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Since we don’t need all the features, can we
compress the latent space?

— Train an aufoencoder to squeeze the latent space from 1024 features to [insert dimension here]

r""""""""'""""""""*. _____ ] bt = i e e
cb,l ! Reconstruction loss

44 y u/

1
// 1
ESMFoId - I :
folding l - ¥4 . .
trunk . - . 'lll: r
i V;
N : 1
L . N ol
Lo . A 1 : ,’
Projcctfoni - i \‘\ : //’/ i
layers ! - s~ 'L
' : | 1 Length& .
i Length& : l,l ! channelwise
ESM2 ! channelwise !

s ' up-projection 3 i
Normalization  down-projection !  Quantization | p-proj Un-normalize

: | L — _______E
. Hourglass Encoder ------: Hourglass Decoder



yes, we can compress up to 128x .
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..but not quite the case for function prediction
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Takeaways

e Background: protein folding models are getting really good
o Good for drug discovery b/c structure resolution is expensive and sequencing is cheap

e Motivation: repurposing them as foundation models?
o Extract the latent space for downstream {generation, search, ...}

e Findings: latent space is disorganized with massive activations
o (Like other LMs)

e Bycompressing the latent space, we find that many channels are

extraneous for structure prediction

o  We can perhaps build a much more compact “foundation model” from these protein
folding models ««

Plus some other findings: see full paper
bit.ly/cheap-proteins
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Preview...

Compressing this latent space offers a
lower-resolution representation, akin to latent
diffusion models (aka Stable Diffusion)

Makes diffusion learning much easier! Allows us to
do function and organism conditioned generation -
paper to come « ¢




