The Unreasonable Compressibility of Protein Folding Models

Paper: bit.ly/cheap-proteins GitHub: github.com/amyxlu/cheap-proteins

Paper

GitHub

background: protein folding 101

What is a protein? structure sequence Proteins can interact with Every protein is made up other proteins, performing of a sequence of amino functions such as signalling acids bonded together and transcribing DNA 000 Amino acids

protein structure 🤝 drug discovery

<u>Example</u>: AlphaFold-predicted structures help us hypothesize how sequence-level mutations in the SARS-CoV2 Omicron variant impacts its mechanism. (Source: van Vuren et al., 2022)

protein structure prediction 🤝 drug discovery

Enter: protein folding models

AlphaFold tutorial: https://bit.ly/amyxlu-af2 **T1037 / 6vr4** 90.7 GDT (RNA polymerase domain) **T1049 / 6y4f** 93.3 GDT (adhesin tip)

Example: AI for binder design

Demo from Google DeepMind's AlphaProteo, released September 5 (today!)

CHEAP

(Compressed Hourglass Embedding Adaptations of Proteins)

Amy X. Lu, Wilson Yan, Kevin K. Yang, Vladimir Gligorijevic, Kyunghyun Cho, Pieter Abbeel, Richard Bonneau, Nathan Frey

Full paper: bit.ly/cheap-proteins

Protein language models can learn structure...

... from large prediction models to foundation models?

∞ ESMFold:

Replaces retrieval step with a **language model**

Motivation:

Can we reuse parts of large protein folding models to decrease training costs for other biological tasks?

harness additional sequence-based priors

learn structural features from sequence latents

...from large prediction models to foundation models?

Let's extract the inner layer representations as a multimodal embedding of sequence and structure...

Characterizing a multimodal latent space

Can we extract the latent space of sequence-to-structure models as a multimodal embedding?

→ multimodal generation

One-shot generation of drug binders!

→ multimodal search

 $\rightarrow \dots$

Find new gene editing enzymes from obscure bacteria!

...turns out that it's not so straightforward :(

some mechanistic interpretability findings:

Protein language models have massive activations

Protein language models have massive activations

Protein language models have massive activations, and these wacky features are really important

Protein language models have massive activations, and these wacky features are really important

Since we don't need all the features, can we compress the latent space?

→ Train an autoencoder to squeeze the latent space from 1024 features to [insert dimension here]

yes, we can compress up to 128x 😳

...but not quite the case for function prediction 🤔

Takeaways

- Background: protein folding models are getting really good
 - Good for drug discovery b/c structure resolution is expensive and sequencing is cheap
- Motivation: repurposing them as foundation models?
 - Extract the latent space for downstream {generation, search, ...}
- Findings: latent space is disorganized with massive activations
 - (Like other LMs)
- By compressing the latent space, we find that <u>many</u> channels are extraneous for structure prediction
 - We can perhaps build a much more compact "foundation model" from these protein folding models ••

Plus some other findings: see full paper <u>bit.ly/cheap-proteins</u>

Preview...

Compressing this latent space offers a lower-resolution representation, akin to latent diffusion models (aka Stable Diffusion)

Makes diffusion learning much easier! Allows us to do function and organism conditioned generation – paper to come